[1]张佼蕊,贺丹,何松林,等.芍药PlSPL3基因的克隆与表达分析[J].江苏农业学报,2020,(06):1537-1542.[doi:doi:10.3969/j.issn.1000-4440.2020.06.025]
 ZHANG Jiao-rui,HE Dan,HE Song-lin,et al.Cloning and expression analysis of PlSPL3 gene from Paeonia lactiflora[J].,2020,(06):1537-1542.[doi:doi:10.3969/j.issn.1000-4440.2020.06.025]
点击复制

芍药PlSPL3基因的克隆与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1537-1542
栏目:
园艺
出版日期:
2020-12-31

文章信息/Info

Title:
Cloning and expression analysis of PlSPL3 gene from Paeonia lactiflora
作者:
张佼蕊1贺丹12何松林2谢栋博1李朝梅1王政1刘艺平1
(1.河南农业大学风景园林与艺术学院,河南郑州450002;2.河南科技学院园艺园林学院,河南新乡453000)
Author(s):
ZHANG Jiao-rui1HE Dan12HE Song-lin2XIE Dong-bo1LI Chao-mei1WANG Zheng1LIU Yi-ping1
(1.College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China;2.School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453000, China)
关键词:
牡丹芍药PlSPL3基因基因克隆基因表达
Keywords:
Paeonia lactifloraPaeonia ostiiPlSPL3 genegene cloninggene expression
分类号:
S682.1+2
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.025
文献标志码:
A
摘要:
为了探究芍药属不同种间远缘杂交不亲和的分子作用机制,以粉玉奴芍药自交授粉后24 h、36 h和粉玉奴芍药×凤丹白牡丹杂交授粉后24 h、36 h的柱头为材料,根据柱头转录组差异基因序列,采用逆转录(RT)-PCR技术,克隆得到SPL3基因的cDNA序列,将其命名为PlSPL3(GenBank登录号:MN842720),随后对其进行生物信息学分析和表达特性分析。结果表明,PlSPL3基因的编码区(Coding sequence,CDS)全长1 305 bp,共编码434个氨基酸。分析结果显示,PlSPL3蛋白是一种带负电荷的不稳定的亲水性蛋白质,无跨膜结构。蛋白质进化树显示,芍药PlSPL3蛋白的氨基酸序列与拟南芥AtSPL7蛋白的氨基酸序列具有较高的同源性,同时芍药PlSPL3蛋白与木瓜、向日葵和无花果SPL3蛋白的氨基酸序列同源性也较高。实时荧光定量PCR(RT-qPCR)结果显示,在自交、杂交授粉后不同时期的柱头中,PlSPL3基因在杂交授粉后36 h的相对表达量最高。研究结果为进一步阐明PlSPL3基因在芍药与牡丹远缘杂交不亲和中的生物学功能提供了理论依据。
Abstract:
In order to explore the molecular mechanism of distant hybridization incompatibility in Paeonia, the stigmas from P. lactiflora Fenyunu × P. lactiflora Fenyunu and P. lactiflora Fenyunu × P. ostii Fengdanbai were harvested as the materials after 24 h and 36 h of pollination. The cDNA sequence of SPL3 gene was cloned by reverse transcription (RT)-PCR technique based on differential gene sequence of transcriptome in stigma, and was named as PlSPL3 (GenBank accession No: MN842720), the bioinformatics and expression characteristics of PlSPL3 were then analyzed. The results showed that 434 amino acids were encoded by the coding sequence of PlSPL3 gene with a length of 1 305 bp. Analysis results showed that PlSPL3 protein was a kind of unstable, hydrophilic protein with negative charges and without transmembrane structure. The results of phylogenetic tree indicated that the amino acid sequence of PlSPL3 protein from P. lactiflora had high homology with that of AtSPL7 protein from Arabidopsis thaliana, and the amino acid sequences of PlSPL3 protein in P. lactiflora were also highly homologous with those of SPL3 protein in Chaenomeles sinensis, Helianthus annuus and Ficus carica. Real-time quantitative PCR (RT-qPCR) results indicated that the relative expression level of PlSPL3 gene was the highest in stigmas at 36 h after hybridization. These results provide a theoretical basis in further elucidating the biological functions of PlSPL3 gene in distant hybridization incompatibility between P. lactiflora and P. ostii.

参考文献/References:

[1]白金娟,沈瑞娟,吴月琴,等. 百合远缘杂交子房培养和胚珠培养[C]//中国园艺学会. 花卉优质、高产、高效标准化栽培技术交流会论文集. 昆明:中国园艺学会, 2014: 4-9.
[2]蒋昌华,叶康,高燕,等. 盐胁迫对13种芍药品种部分生理指标的影响研究[J]. 西北林学院学报, 2018, 33(2): 70-74.
[3]贺丹,解梦珺,吕博雅,等. 牡丹与芍药的授粉亲和性表现及其生理机制分析[J]. 西北农林科技大学学报(自然科学版), 2017, 45(10): 129-136.
[4]郝津藜,董晓晓,袁涛, 等. 四种药剂柱头处理对芍药属远缘杂交授粉结实率的影响[J]. 中国农业大学学报, 2019, 24(1): 40-45.
[5]侯祥云,郭先锋. 芍药属植物杂交育种研究进展[J]. 园艺学报, 2013, 40(9): 1805-1812.
[6]马翔龙,吴敬需,刘少华. 伊藤牡丹发展现状与展望[J]. 中国花卉园艺, 2018(16): 28-31.
[7]郝青,刘政安,舒庆艳,等. 中国首例芍药牡丹远缘杂交种的发现及鉴定[J]. 园艺学报, 2008, 35(6): 853-858.
[8]HAO Q, AOKI N, KATAYAMA J, et al. Crossability of American tree peony ‘High Noon′ as seed parent with Japanese cultivars to breed superior cultivars[J]. Euphytica, 2013, 191: 35-44.
[9]王文和,王树栋,赵祥云,等. 百合远缘杂交花粉萌发及花粉管生长过程观察[J]. 西北植物学报, 2007, 27(9): 1790-1794.
[10]郭朋辉,吴景芝,王玉英,等. 紫斑百合远缘杂交亲和性分析及杂交障碍克服[J]. 南方农业学报, 2019, 50(9): 1903-1912.
[11]郝津藜,赵娜,石颜通,等. 黄牡丹远缘杂交亲和性及杂交后代形态分析[J]. 园艺学报, 2014, 41(8): 1651-1662.
[12]HE D, LOU X Y, HE S L, et al. Isobaric tags for relative and absolute quantitation-based quantitative proteomics analysis provides novel insights into the mechanism of cross-incompatibility between tree peony and herbaceous peony[J]. Functional Plant Biology, 2019, 46(5): 417-427.
[13]KERHOAS C, KNOX R B, DUMAS C. Specificity of the callose response in stigmas of Brassica[J]. Annals of Botany, 1983, 52(4): 597-602.
[14]田晶,赵雪媛,谢隆聖,等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 159-166.
[15]KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular and General Genetics, 1996, 250(1): 7-16.
[16]XING S P, SALINAS M, GARCIA-MOLINA A, et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. The Plant Journal, 2013, 75(4): 566-577.
[17]YAMAGUCHI A, WU M F, YANG L, et al. The MicroRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell, 2009, 17(2): 268-278.
[18]李明,李长生,赵传志,等. 植物SPL转录因子研究进展[J]. 植物学报, 2013, 48(1): 107-116.
[19]HULTQUIST J F, DORWEILER J E. Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes[J]. Planta, 2008, 229(1): 99-113.
[20]FERREIRA G F, SILVA E M, AZEVEDO M S, et al. microR-NA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. The Plant Journal, 2014, 78(4): 604-618.
[21]HOU H M, LI J, GAO M, et al. Genomic organization,phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. PLoS One, 2013, 8(3): e59358.
[22]战新梅,管世铭,张玉喜. 牡丹PsSPL3基因的克隆和表达特性分析[J]. 华北农学报, 2017, 32(4): 13-18.
[23]JUNG J H, LEE H J, RYU J Y, et al. SPL3/4/5 integrate development aging and photoperiod signals into the FT-FD module in Arabidopsis flowering[J]. Molecular Plant, 2016, 9(12): 1647-1659.
[24]GANDIKOTA M, BIRKENBIHL R P, HHMANN S, et al. The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. The Plant Journal, 2007, 49(4): 683-693.
[25]WANG Z S, WANG Y,KOHALMI S E, et al. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana[J]. Plant Molecular Biology, 2016, 92(6): 661-674.
[26]WEIGEL D, NILSSON O. A developmental switch sufficient for flower initiation in diverse plants[J]. Nature, 1995, 377: 495-500.
[27]UNTE U S, SORENSEN A M, PESARESI P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. The Plant Cell, 2003, 15(4): 1009-1019.
[28]贺丹,王雪玲,高晓峰,等. 牡丹芍药远缘杂交亲和性[J]. 东北林业大学学报, 2014, 2(7): 65-68.
[29]林榕燕,樊荣辉,陈裕德,等. 鸡爪槭ApPSY和ApPDS基因克隆及其表达分析[J].核农学报,2019, 33(12): 2338-2346.
[30]赖呈纯,潘红,黄贤贵,等. 刺葡萄愈伤组织UFGT基因克隆及表达分析[J].核农学报,2019, 33(9): 1677-1685.
[31]THOMAS D S, KENNETH J L. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108.
[32]GUO J,SONG J,WANG F, et al. Genome-wide identification and expression analysis of rice cell cycle genes[J]. Plant Molecular Biology, 2007, 64(4): 349-360.
[33]贺丹,高小峰,吕博雅,等. 牡丹、芍药花芽分化的形态学研究[J]. 河南农业科学, 2014, 43(12): 117- 120.
[34]律春燕,王雁,朱向涛,等. 黄牡丹花粉生活力测定方法的比较研究[J]. 林业科学研究, 2010, 23(2): 272-277.
[35]NODINE M D, BARTEL D P. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes and Development, 2010, 24(23): 2678-2692.
[36]LIU N, TU L L, WANG L C, et al. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biology, 2017, 17(1): 7.
[37]SHIKATA M, KOYAMA T, MITSUDA N, et al. Arabidopsis SBP-box genes SPL10,SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant and Cell Physiology, 2009, 50(12): 2133-2145.
[38]张姣,朱启迪,巨岚,等. 小麦生理型雄性不育系微丝骨架和胼胝质的变化与其相关基因的表达分析[J]. 中国农业科学, 2015, 48(14): 2687-2696.
[39]曹雪,王晨,房经贵,等. 葡萄SPL9和SPL10基因全长cDNA克隆、亚细胞定位和表达分析[J]. 园艺学报, 2011, 38(2): 240-250.

相似文献/References:

[1]贺丹,吴芳芳,张佼蕊,等.牡丹转录组SSR信息分析及其分子标记开发[J].江苏农业学报,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
 HE Dan,WU Fang-fang,ZHANG Jiao-rui,et al.Analysis of SSR information in transcriptome and development of molecular markers in Paeonia suffruticosa[J].,2019,(06):1428.[doi:doi:10.3969/j.issn.1000-4440.2019.06.023]
[2]王韬远,陶冶,夏德美,等.外源喷施1-甲基环丙烯(1-MCP)对干旱胁迫下芍药幼苗生长的影响及作用机理[J].江苏农业学报,2020,(02):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]
 WANG Tao-yuan,TAO Ye,XIA De-mei,et al.Effects of spraying exogenous 1-methylcyclopropene(1-MCP) on growth of Paeonia lactiflora Pall. seedlings under drought stress and its mechanism[J].,2020,(06):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]
[3]李胜皓,张晓芝,潘月,等.基于响应面法对皇冠牡丹(Paeonia×lemoinei ‘Yellow Crown’)增殖培养基大量元素配方的优化[J].江苏农业学报,2024,(08):1493.[doi:doi:10.3969/j.issn.1000-4440.2024.08.014]
 LI Shenghao,ZHANG Xiaozhi,PAN Yue,et al.Optimization of macro-elements composition in the multiplication medium of Paeonia×lemoinei ‘Yellow Crown’ based on response surface methodology[J].,2024,(06):1493.[doi:doi:10.3969/j.issn.1000-4440.2024.08.014]
[4]贺丹,曹健康,何松林,等.芍药属植物远缘杂交亲和性及其雌蕊的生理响应机制[J].江苏农业学报,2023,(03):822.[doi:doi:10.3969/j.issn.1000-4440.2023.03.024]
 HE Dan,CAO Jian-kang,HE Song-lin,et al.Distant hybrid compatibility of Paeonia and its physiological response mechanism of pistil[J].,2023,(06):822.[doi:doi:10.3969/j.issn.1000-4440.2023.03.024]

备注/Memo

备注/Memo:
收稿日期:2020-04-17基金项目:国家自然科学基金项目(31600568、31870698);河南省科技攻关项目(202102110234);河南农业大学科技创新基金项目(KJCX2015A03)作者简介:张佼蕊(1997-),女,河南宝丰人,硕士,主要从事园林植物育种研究。(E-mail)z1997jr@163.com通讯作者:何松林,(E-mail)hsl213@yeah.net
更新日期/Last Update: 2021-01-15