[1]高菊玲,刘永华.基于风扇差速调节的微型植物工厂温度精准控制[J].江苏农业学报,2020,(06):1543-1550.[doi:doi:10.3969/j.issn.1000-4440.2020.06.026]
 GAO Ju-ling,LIU Yong-hua.Research on precise temperature control of mini-plant factory environment based on fan differential adjustment technology[J].,2020,(06):1543-1550.[doi:doi:10.3969/j.issn.1000-4440.2020.06.026]
点击复制

基于风扇差速调节的微型植物工厂温度精准控制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1543-1550
栏目:
园艺
出版日期:
2020-12-31

文章信息/Info

Title:
Research on precise temperature control of mini-plant factory environment based on fan differential adjustment technology
作者:
高菊玲12刘永华12
(1.江苏农林职业技术学院机电工程学院,江苏句容212400;2.江苏省现代农业装备工程中心,江苏句容212400)
Author(s):
GAO Ju-ling12LIU Yong-hua12
(1.College of Mechanical and Electrical Engineering, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;2.Jiangsu Modern Agricultural Equipment and Engineering Center, Jurong 212400, China)
关键词:
微型植物工厂CFD模拟仿真风扇差速调节混风通道精准控制
Keywords:
mini-plant factorycomputational fluid dynamics (CFD) simulationfan differential adjustmentmixed air channelprecise control
分类号:
S626.9
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.026
文献标志码:
A
摘要:
微型植物工厂环境的精准调控是实现其智能化控制的前提,但是已有的环境调控方式存在各栽培层温度差异较大的问题。本研究提出在微型植物工厂内部加入混风通道并采用风扇差速调节的方式,在计算流体动力学(Computational fluid dynamics,CFD)模拟仿真中设定目标温度为20 ℃,通过软件计算得到各栽培层的进风量分别为0.018 9 m3/s、0.023 6 m3/s、0.028 1 m3/s。通过风速调节旋钮对进风量进行调节,通过各层风扇的差速调节来实现各栽培层的均匀调温。结果表明,在目标温度为20 ℃的条件下,控温设备持续工作60 min后,未使用混风通道和风速差速调节控温方式的传统微型植物工厂内第1、第2栽培层的温度为19 ℃,而第3栽培层的温度为24 ℃,温差达到了5 ℃;使用混风通道和风速差速调节控温方式下的微型植物工厂,各栽培层的温度均为20.5 ℃左右。由结果可知,在加入混风通道并且进行风扇差速调节后,各栽培层的环境温差得到了有效改善。
Abstract:
Achieving precise control of the mini-plant factory environment is the prerequisite for its intelligent control, but the previous environmental control methods have the problem of large temperature differences among cultivation layers in mini-plant factory. In this study, a mixed air channel was added in the micro plant factory, and the method of fan differential adjustment was adoped. In the computational fluid dynamics (CFD) simulation, the target temperature was set at 20 ℃, and the air intake volume of each cultivation layer was 0.018 9 m3/s, 0.023 6 m3/s and 0.028 1 m3/s. The air inlet volume was adjusted by the wind speed adjustment knob, and the uniform temperature adjustment of each cultivation layer was realized by the differential adjustment of the fans. The experimental results showed that when the target temperature was 20 ℃ and the temperature-control equipment continued to work for 60 min, the temperature of the first, second and third cultivation layers was 19 ℃, 19 ℃ and 24 ℃ in the micro-plant factory without the mixing channel and the wind speed differential adjustment, the temperature difference reached 5 ℃. The temperature of each cultivation layer was about 20.5 ℃ under the temperature control mode of mixed air channel and wind speed differential adjustment. In conclusion, the environmental temperature difference of each cultivation layer has been effectively improved by using the mixed air channel and fan differential adjustment.

参考文献/References:

[1]United Nations, Department of Economic and Social Affairs, Population Division. World population prospects: the 2017 revision, key findings and advance tables[Z]. Working Paper NO ESA/P/WP/248, 2017.
[2]United Nations, Department of Economic and Social Affairs, Population Division. World urbanization prospects: the 2014 revision[Z]. Working Paper NO ST/ESA/SER.A/366, 2015.
[3]KOZAI T. Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory[J]. Proceedings of the Japan Academy, Series B, 2013, 89(10): 447-461.
[4]KOZAI T. Sustainable plant factory: closed plant production systems with artificial light for high resource use efficiencies and quality produce[J]. Acta Horticulturae, 1004(1004):27-40.
[5]FALSTER D S, WESTOBY M. Leaf size and angle vary widely across species: what consequences for light interception?[J]. New Phytologist, 2003, 158(3): 509-525.
[6]KOZAI T, NIU G H, TAKAGAKI M, et al. Plant factory: an indoor vertical farming system for efficient quality food production[M]. London: Academic Press, 2015:423.
[7]贾鹤鸣,张森,宋文龙,等. 基于CFD的微型植物工厂湿热环境数值分析[J].林业工程学报,2018,3(6):122-127.
[8]左志宇,徐超,毛罕平,等. 微型植物工厂环境控制参数优化试验研究[J].农机化研究,2020,42(12) :150-155.
[9]茅艳. 人体热舒适气候适应性研究[D].西安:西安建筑科技大学,2007.
[10]宋云鹏,刘凯歌,龚繁荣.不同生菜品种苗期耐热性的综合评价[J].浙江农业学报,2015,27(2):176-181.
[11]杨其长,徐志刚,陈弘达,等.LED光源在现代农业的应用原理与技术进展[J].中国农业科技导报,2011,13(5): 37-43.
[12]赵 敏,陈志平,张巨勇.大功率LED灯的热分析与热设计[J].机电工程,2012,29(2): 220-223.
[13]KOZAI T, KUBOTA C, CHUN C, et al. Necessity and concept of the closed transplant production system[M]//Kubota C, Chun C. Proceedings for the International Symposium on Transplant Production in Closed System. Dordrecht, the Netherlands: Kluwer Academic Publisher, 2000: 3-19.
[14]鞠红艳,李季,孙艺哲,等. 微型植物工厂LED多光谱补光系统的设计与应用[J].吉林农业大学学报,2020, 42(1):113-118.
[15]闫梦笛,富诗语,徐明阳,等. 家庭微型植物工厂景观营造初探[J].居舍,2019(18):112.
[16]HANG T, LU N, TAKAGAKI M, et al. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles[J]. Scientia Horticulturae, 2019, 252: 113-120.

备注/Memo

备注/Memo:
收稿日期:2020-10-23基金项目:2019年度江苏省高校优秀科技创新团队项目(设施园艺智能装备)作者简介:高菊玲(1981-),女,江苏泰兴人,硕士,副教授,研究方向为智能农业装备、农业物联网等。(E-mail)89059025@qq.com通讯作者:刘永华,(E-mail)271681387@qq.com
更新日期/Last Update: 2021-01-15