[1]单捷,孙玲,王志明,等.GF-1影像遥感监测指标与冬小麦长势参数的关系[J].江苏农业学报,2019,(06):1323-1333.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
 SHAN Jie,SUN Ling,WANG Zhi-ming,et al.Relationship between remote sensing monitoring indices and growth parameters in winter wheat based on GF-1 images[J].,2019,(06):1323-1333.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
点击复制

GF-1影像遥感监测指标与冬小麦长势参数的关系()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1323-1333
栏目:
耕作栽培·资源环境
出版日期:
2019-12-31

文章信息/Info

Title:
Relationship between remote sensing monitoring indices and growth parameters in winter wheat based on GF-1 images
作者:
单捷孙玲王志明卢必慧王晶晶邱琳黄晓军
(江苏省农业科学院农业信息研究所,江苏南京210014)
Author(s):
SHAN JieSUN LingWANG Zhi-mingLU Bi-huiWANG Jing-jingQIU LinHUANG Xiao-jun
(Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
冬小麦生育期长势GF-1影像遥感监测
Keywords:
winter wheatgrowth stagegrowthGF-1 imageremote sensing monitoring
分类号:
S512.1; S127
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.008
文献标志码:
A
摘要:
为了分析高分一号卫星(GF-1)影像在冬小麦长势监测中的有效性和适宜性,以建湖县冬小麦为研究对象,选取12个植被指数作为遥感监测指标,运用回归分析法探讨遥感监测指标与地面实测冬小麦长势参数的关系,并以回归模型的决定系数(R2)作为反演精度的评价指标。研究发现,叶面积指数(LAI)、密度和生物量的反演精度较高,其中LAI的反演精度在拔节期最高[监测指标:红蓝色归一化植被指数(RBNDVI),R2:0.689 4],密度的反演精度在拔节期最高[监测指标:优化的土壤调节植被指数(OSAVI),R2:0.543 8],生物量的反演精度在孕穗期最高[监测指标:归一化植被指数(NDVI),R2:0.448 6],说明GF-1影像适合在拔节期进行冬小麦LAI、密度的监测,在孕穗期进行生物量监测。土壤含水量、株高和叶绿素含量(SPAD值)的反演精度较差,最佳回归模型的R2皆低于0.360 0,说明所选的12个遥感监测指标不适合反演这3个长势参数。除乳熟期外,其他4个生育期中都是LAI的反演精度最高,可见GF-1影像的遥感监测指标与LAI的相关性最好,反演精度最高。本研究结果说明,在进行冬小麦长势监测时,不同的生育期需要采用不同的监测指标,同时GF-1影像则更适合在拔节期和孕穗期进行冬小麦的长势监测。本研究结果在一定程度上为GF-1影像在农情遥感监测中的应用提供了科学依据。
Abstract:
In order to analyze the effectiveness and validity of GF-1 images in winter wheat growth monitoring, twelve vegetation indices were selected as remote sensing monitoring indices, and the differences between monitoring indices and growth parameters, leaf area index (LAI), aboveground biomass, leaf chlorophyll content (SPAD value), density, plant height and soil water capacity (0-10 cm) during five critical growing stages were analyzed with regression analysis. It took the determination coefficient (R2) of regression model as retrieval accuracy assessment indicator. The results showed that the highest R2 between monitoring indices and LAI was 0.689 4 at jointing stage using red blue normalized difference vegetation index (RBNDVI). The highest R2 between monitoring indices and density was 0.543 8 at jointing stage using optimal soil adjusted vegetation index (OSAVI). The highest R2 between monitoring indices and biomass was 0.448 6 at booting stage using normalized difference vegetation index (NDVI). It was concluded that GF-1 image was more suitable for monitoring the growth of winter wheat at jointing and booting stages. The inversion accuracy of soil water capacity, plant height and SPAD was poor, and R2 of the best regression model was lower than 0.360 0. These results indicated that the 12 remote sensing monitoring indices were not suitable for inversion of the three growth parameters. The LAI had the highest inversion accuracy at other four stages except milky stage. So, different monitoring indicators should be used to monitor the growth of winter wheat in different growth periods. GF-1 image is more suitable for growth monitoring of winter wheat at jointing and booting stages. These results from this study provide scientific basis for the application of GF-1 image in agricultural monitoring.

参考文献/References:

[1]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2018.
[2]肖乾广,周嗣松,陈维英,等.用气象卫星数据对冬小麦进行估产的试验[J].遥感学报,1986,1(4):260-269.
[3]杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报, 1999, 15(3):214-218.
[4]MORAN M S, INOUE Y, BARNES E M. Opportunities and limitations for image-based remote sensing in precision crop management [J]. Remote Sensing of Environment, 1997, 61(3):319-346.
[5]吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报, 2004, 8(6):498-514.
[6]裴志远,郭琳,汪庆发.国家级作物长势遥感监测业务系统设计与实现[J].农业工程学报,2009,25(8):152-156.
[7]吴炳方,刘海燕.水稻种植面积估计的运行化遥感方法[J].遥感学报,1997,1(1):58-63.
[8]刘海启.欧盟MARS计划简介与我国农业遥感应用思路[J].中国农业资源与区划,1999, 20(3):55-57.
[9]吴炳方.中国农情遥感速报系统[J].遥感学报,2004, 8(6):481-497.
[10]徐希孺,周莲芳,朱晓红.混合像元的因子分析方法及其在大范围冬小麦播种面积估算中的应用探讨[J]. 科学通报, 1989, 34(12):946-949.
[11]张雪芬,陈怀亮,邹春辉,等.GIS支持下的小麦区域化苗情遥感监测应用研究[J].大气科学学报,1999,22(1):116-120.
[12]张明席,胡成群. 用卫星探测资料建立水稻种植面积测算模式研究[J]. 气象, 1992, 18(4):9-16.
[13]裴志远,杨邦杰.多时相归一化植被指数NDVI的时空特征提取与作物长势模型设计[J].农业工程学报, 2000, 16(5):20-22.
[14]陈怀亮,李颖,张红卫.农作物长势遥感监测业务化应用与研究进展[J].气象与环境科学,2015,38(1):95-102.
[15]王恺宁,王修信.多植被指数组合的冬小麦遥感估产方法研究[J].干旱区资源与环境,2017,31(7):44-49.
[16]邹文涛,吴炳方,张淼,等.农作物长势综合监测——以印度为例[J].遥感学报, 2015, 19(4): 539-549.
[17]于堃,王志明,孙玲,等.MODIS时序数据在县级尺度作物长势监测分析中的应用[J].江苏农业学报,2013, 29(6):1278-1290.
[18]李存军,王纪华,王娴,等.遥感数据和作物模型集成方法与应用前景[J].农业工程学报,2008,24(11):295-301.
[19]黄健熙,武思杰,刘兴权,等.基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J].农业工程学报, 2012, 28(4):142-148.
[20]张树誉,孙辉涛,王鹏新,等.基于同化叶面积指数和条件植被温度指数的冬小麦单产估测[J].干旱地区农业研究,2017,35(6):266-293.
[21]陈艳玲,顾晓鹤,宫阿都,等.基于遥感信息和WOFOST模型参数同化的冬小麦单产估算方法研究[J].麦类作物学报,2018, 38(9):1127-1136.
[22]赵虎,杨正伟,李霖,等.作物长势遥感监测指标的改进与比较分析[J].农业工程学报,2011,27(1):243-249.
[23]王来刚,邹春辉,刘婷,等.河南省冬小麦长势遥感监测指标的适宜性[J].麦类作物学报,2013,33(5):1006-1011.
[24] HUANG J, TIAN L, LIANG S, et al. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[J]. Agricultural and Forest Meteorology, 2015, 204: 106-121.
[25]侯学会,隋学艳,姚慧敏,等.基于物候信息的山东省冬小麦长势遥感监测[J].国土资源遥感,2018,30(2): 171-177.
[26]解毅,王鹏新,王蕾,等.基于作物及遥感同化模型的小麦产量估测[J]. 农业工程学报, 2016, 32(20):179-186.
[27]谭昌伟,杨昕,马昌,等.基于HJ-1A/1B影像的冬小麦开花期主要生长指标遥感定量监测研究[J]. 麦类作物学报, 2015, 35(3):427-435.
[28]王利民,杨玲波,刘佳,等. GF-1和MODIS影像冬小麦长势监测指标NDVI的对比[J].作物学报, 2018, 44(7):1043-1054.
[29]裴浩杰,冯海宽,李长春,等.基于综合指标的冬小麦长势无人机遥感监测[J]. 农业工程学报, 2017, 33(20):74-82.
[30]ROUSE J W, HAAS R H, SCHELL J A. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[R].Texas: College Station, 1974.
[31]PEARSON R L, MILLER L D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie[C]. Michigan: Ann Arbor, 1972.
[32]JIANG Z, HUETE A R, DIDAN K, et al. Development of a two-band enhanced vegetation index without a blue band [J]. Remote Sensing of Environment, 2008, 112(10):3833-3845.
[33]HUETE A R. A soil-adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment,1988,25(3): 295-309.
[34]RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices [J]. Remote Sensing of Environment, 1996, 55(2):95-107.
[35]QI J G, CHEHBOUNR A R, HUETE A R, et al. A modified soil adjusted vegetation index [J]. Remote Sensing of Environment, 1994, 48(2):119-126.
[36]GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment, 1996, 58(3):289-298.
[37]刘占宇,黄敬峰,王福民,等.估算水稻叶面积指数的调节型归一化植被指数[J]. 中国农业科学, 2008, 41(10):3350-3356.
[38]王福民,黄敬峰,唐延林,等.新型植被指数及其在水稻叶面积指数估算上的应用[J]. 中国水稻科学, 2007, 21(2):159-166.
[39]王蕾,王鹏新,李俐, 等. 河北省中部平原玉米长势遥感综合监测[J]. 资源科学, 2018, 40(10): 2099-2109.
[40]王维,王鹏新,解毅,等.基于CERES-Wheat和遥感数据的土壤水分供给量反演[J]. 农业机械学报, 2015, 46(9):282-288.
[41]陈智芳,宋妮,王景雷,等.基于高光谱遥感的冬小麦叶水势估算模型[J]. 中国农业科学, 2017,50(5):871-880.

相似文献/References:

[1]葛道阔,曹宏鑫,马晓群,等.基于作物生长模型的小麦旱涝敏感性分析与损失评估[J].江苏农业学报,2016,(06):1302.[doi:doi:10.3969/j.issn.1000-4440.2016.06.017]
 GE Dao-kuo,CAO Hong-xin,MA Xiao-qun,et al.Sensitivity analysis and damage assessment for wheat drought and waterlogged based on crop growth model[J].,2016,(06):1302.[doi:doi:10.3969/j.issn.1000-4440.2016.06.017]
[2]金正婷,李卫国,景元书.基于影像融合的冬小麦种植面积提取适宜尺度研究[J].江苏农业学报,2015,(06):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]
 JIN Zheng-ting,LI Wei-guo,JING Yuan-shu.Appropriate extraction scale of winter wheat planting area based on image fusion[J].,2015,(06):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]
[3]肇思迪,娄运生,庞渤,等.UV-B辐射增强下施硅对冬小麦光合特性和产量的影响[J].江苏农业学报,2017,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
 ZHAO Si-di,LOU Yun-sheng,PANG Bo,et al.Effects of silicate application on photosynthesis and yield in winter wheat under elevated UV-B radiation[J].,2017,(06):1036.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
[4]葛道阔,曹宏鑫,杨余旺,等.基于WCSODS的小麦旱涝灾损区域化监测与精细化评估[J].江苏农业学报,2017,(05):1062.[doi:doi:10.3969/j.issn.1000-4440.2017.05.016]
 GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Regional monitoring and refined assessment for damage from wheat drought and waterlogging based on WCSODS[J].,2017,(06):1062.[doi:doi:10.3969/j.issn.1000-4440.2017.05.016]
[5]巫明焱,董光,税丽,等.基于Landsat 8影像的济宁市春季主要作物种植面积变化监测[J].江苏农业学报,2018,(03):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
 WU Ming-yan,DONG Guang,SHUI Li,et al.Change detection of main spring crops area in Jining based on Landsat 8 images[J].,2018,(06):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
[6]闫会,张允刚,刘亚菊,等.生育期对徐紫薯8号品质及结薯性的影响[J].江苏农业学报,2019,(01):9.[doi:doi:10.3969/j.issn.1000-4440.2019.01.002]
 YAN Hui,ZHANG Yun-gang,LIU Ya-ju,et al.Effects of growth stage on quality and tuber traits of new sweet potato cultivar Xuzishu8[J].,2019,(06):9.[doi:doi:10.3969/j.issn.1000-4440.2019.01.002]
[7]李卫国,顾晓鹤,葛广秀,等.县域冬小麦病害遥感监测信息系统研制[J].江苏农业学报,2019,(02):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
 LI Wei-guo,GU Xiao-he,GE Guang-xiu,et al.Development of remote sensing monitoring information system for county scale winter wheat diseases[J].,2019,(06):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
[8]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(06):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[9]马美娟,陈小新,张云霞,等.分期播种冬小麦农田小气候特征及其生育状况分析[J].江苏农业学报,2021,(03):613.[doi:doi:10.3969/j.issn.1000-4440.2021.03.009]
 MA Mei-juan,CHEN Xiao-xin,ZHANG Yun-xia,et al.Analysis on field microclimate characteristics and growth of winter wheat under different sowing dates[J].,2021,(06):613.[doi:doi:10.3969/j.issn.1000-4440.2021.03.009]
[10]吴金芝,黄明,王志敏,等.干旱对冬小麦旗叶光合参数、产量和水分利用效率的影响[J].江苏农业学报,2021,(05):1108.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]
 WU Jin-zhi,HUANG Ming,WANG Zhi-min,et al.Effects of drought on flag leaf photosynthetic parameters, grain yield and water use efficiency in winter wheat[J].,2021,(06):1108.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]

备注/Memo

备注/Memo:
收稿日期:2019-05-14 基金项目:江苏省农业科学院基金项目(6111651);农业农村部农业遥感重点实验室开放基金项目(2017006);江苏省农业科技自主创新基金项目[CX(17)3020] 作者简介:单捷(1986-),女,江苏南京人,硕士,助理研究员,主要从事农业遥感监测工作。(E-mail)shanjie@jaas.ac.cn 通讯作者:孙玲,(E-mail)lingsun@jaas.ac.cn
更新日期/Last Update: 2020-01-09