[1]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220-1226.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
 HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(06):1220-1226.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
点击复制

盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年06期
页码:
1220-1226
栏目:
遗传育种·生理生化
出版日期:
2017-12-30

文章信息/Info

Title:
The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton
作者:
黄芳12徐珍珍2孟珊2刘静2汪保华1沈新莲2
(1.南通大学生命科学学院,江苏南通226019;2.江苏省农业科学院经济作物研究所/农业部长江下游棉花和油菜重点实验室,江苏南京210014)
Author(s):
HUANG Fang12XU Zhen-zhen2MENG Shan2LIU Jing2WANG Bao-hua1SHEN Xin-lian2
(1.School of Life Science, Nantong University, Nantong 226019, China;2.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China)
关键词:
棉花盐胁迫LTR-反转座子转录活性邻近基因
Keywords:
cottonsalt stresslong terminal repeat retrotransposons (LTR-RTs)transcription activityadjacent genes
分类号:
S562
DOI:
doi:10.3969/j.issn.1000-4440.2017.06.004
文献标志码:
A
摘要:
LTR-反转座子是棉花基因组的主要组成部分,在基因组中通常呈现“静止”状态。但受到胁迫刺激时,部分反转座子的转录活性可被“激活”,可能影响邻近基因的表达。本研究在盐胁迫下通过生物信息学手段,在旱地棉转录组数据库中检测到3 885个转录激活的候选LTR-反转座子;这些候选LTR-反转座子上下游5 kb内共有1 787个邻近基因,其中377个邻近基因在盐胁迫下差异表达,通过对377个基因进行功能注释发现,326个基因注释到GO数据库中,并且部分基因与棉花已报道过的耐盐抗旱基因同源。本研究结果将为棉花的耐盐分子机理解析提供一定的理论基础。
Abstract:
Long terminal repeat retrotransposons (LTR-RTs) are the most abundant genomic components in cotton. Normally, LTR-RTs keep in a quiescent state in their host genomes. Using a variety of stresses, the transcription activities of some LTR-RTs may be greatly activated, and they probably influence the expression of their related genes, such as adjacent genes. In this study, 3 885 candidate LTR-RTs with transcription activities were detected under salt stress based on the transcriptome data of Gossypium aridum. In parallel, 1 787 genes with distances of less than 5 kb to these 3 885 LTR-RTs were identified, and 377 genes were differentially expressed under salt stress. 326 genes were annotated to the gene ontology database, and some of them were homologous genes with salt-tolerant and drought-resistant genes which had been reported in cotton. This study will provide a basis for the cotton molecular mechanism of salt-tolerant.

参考文献/References:

[1]ZHAO M X, MA J X.Co-evolution of plant LTR-retrotransposons and their host genomes[J]. Protein & Cell, 2013, 4(7):493-501.
[2]MA J X, DEVOS K M, BENNETZEN J L. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice[J]. Genome Research, 2004, 14(5):860-869.
[3]PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229):551-556.
[4]TIAN Z X, RIZZON C, DU J C, et al. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?[J]. Genome Research, 2009, 19(12):2221-2230.
[5]DU J C, GRANT D, TIAN Z X, et al. SoyTEdb: a comprehensive database of transposable elements in the soybean genome[J]. BMC Genomics, 2010, 11(1):113.
[6]WANG K B, WANG Z W, LI F G, et al. The draft genome of a diploid cotton Gossypium raimondii[J]. Nature Genetics, 2012, 44(10):1098-1103.
[7]PATERSON A H, WENDEL J F, GUNDLACH H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429):423.
[8]LI F G, FAN G Y, WANG K B, et al. Genome sequence of the cultivated cotton Gossypium arboretum[J]. Nature Genetics, 2014, 46(6):567-572.
[9]SUN H, LUHMANN H J, KILB W. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation[J]. Plant & Cell Physiology, 2012, 53(5):766-784.
[10]GRANDBASTIEN M A. Activation of plant retrotransposons under stress conditions[J]. Trends in Plant Science, 1998, 3(5):181.
[11]FELICE B D, WILSON R R, ARGENZIANO C, et al. A transcriptionally active copia-like retroelement in Citrus Limon [J]. Cellular & Molecular Biology Letters, 2009, 14(2):289-304.
[12]徐玲,杨静,刘林,等. 水稻gypsy类逆转座子对不同胁迫条件的响应[J]. 湖南农业大学学报, 2012, 38(6):591-596.
[13]TSUGANE K, MAEKAWA M, TAKAGI K, et a1. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice[J]. Plant Journal for Cell & Molecular Biology, 2006, 45(1):46-57.
[14]KASHKUSH K, KHASDAN V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes[J]. Genetics, 2007, 177(4):1975-1985.
[15]KOBAYASHI S, GOTO-YAMAMOTO N, HIROCHIKA H. Retrotransposon–induced mutations in grape skin color[J]. Science, 2004, 304 (5673):982.
[16]VARAGONA M J, PURUGGANAN M, WESSLER S R. Alternative splicing induced by insertion of retortransposons into the maize waxy gene[J]. Plant Cell, 1992, 4(7):811-820.
[17]JENNIFER S H, HYERAN K, JOHN D N, et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium[J]. Genome Research, 2006, 16(10):1252-1261.
[18]LUO S, MACH J, ABRAMSON B , et al. The cotton centromere contains a Ty3-gypsy-like LTR retroelement[J]. Plos One, 2012, 7 (4):e35261.
[19]杨长琴,刘瑞显,张国伟,等. 花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,31(6):1218-1223.
[20]MARTINEZ-CARRASCO R, SANCHEZ-RODRIGUEZ J, PEREZ P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forestry[J]. Photosynthetica, 2002, 40(3):363-368.
[21]韩勇,衡丽,李华,等.种植方式对江苏滨海盐碱地棉花产量和生理活性的影响[J].江苏农业科学,2016,44(11):111-113.
[22]叶武威,刘金定. 棉花种质资源耐盐性鉴定技术与应用[J]. 中国棉花, 1998, 25(9):37-38.
[23]XU Z Z, LIU J, NI W C, et al. GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii)[J]. Database, 2017(1):1-7.
[24]XU P, LIU Z W, FAN X Q, et al. De novo transcrip sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress[J]. Gene, 2013, 525(1): 26-34.
[25]XUE T T, LI X Z, ZHU W, et al. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast [J]. Journal of Experimental Botany, 2009, 60(1): 339-349.
[26]GUO Y H, YU Y P, WANG D, et al. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5 [J]. New Phytologist, 2009, 183(1): 62-75.
[27]HUANG J G, YANG M, LIU P, et al. GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis [J]. Plant Cell and Environment, 2009, 32(8): 1132-1145.
[28]ZHU C F, WANG Y X, LI Y B, et al. Overexpression of a cotton cyclophilin gene (GhCyp1) in transgenic tobacco plants confers dual tolerance to salt stress and Pseudomonas syringae pv. tabaci infection [J]. Plant Physiology and Biochemistry, 2011, 49(11): 1264-1271.
[29]HE L R, YANG X Y, WANG L C, et al. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants [J]. Biochemical and Biophysical Research Communications, 2013, 435(2): 209-215.
[30]ZHAO J, GAO Y L, ZHANG Z Y, et al. A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis [J]. BMC Plant Biology, 2013, 13(1): 110.
[31]SHI W N, HAO L L, LI J, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana [J]. Plant Cell Reports, 2014, 33(3): 483-498.
[32]YAN H R, JIA H H, CHEN X B, et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production [J]. Plant & Cell Physiology, 2014, 55(12): 2060-2076.
[33]JIA H H, WANG C, WANG F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(3): e0120646.
[34]BELLO B, ZHANG X Y, LIU C L, et al. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance [J]. PLoS One, 2014, 9(11): e112269.
[35]GAO S Q, CHEN M, XIA L Q, et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat [J]. Plant Cell Reports, 2009, 28(2): 301-311.
[36]MITTAL A, GAMPALA S S, RITCHIE G L, et al. Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation [J]. Plant Biotechnology Journal, 2014, 12(5): 578-589.
[37]MENG C M, CAI C P, ZHANG T Z, et al. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.[J]. Plant Science, 2009, 176(3): 352-359.
[38]LIU G Z, LI X L, JIN S X, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton [J]. PLoS One, 2014, 9(1): e86895.
[39]五个棉花逆境相关锌指蛋白基因的功能初步分析[D].南京: 南京农业大学, 2012.
[40]赵美霞,张彪,刘胜毅,等. 白菜和甘蓝基因组转座子表达及其对基因调控的潜在影响[J]. 遗传, 2013, 35(8): 1014-1022.
[41]ZABALA G, VODKIN L. A putative autonomous 20.5 kb CACTA transposon subfamily in an F3’H allele identifies a new CACTA transposon subfamily Glycine max[J]. BMC Plant Biology, 2008, 8(1):124.

相似文献/References:

[1]赵亮,狄佳春,陈旭升.棉花基因组数据库中CPS&KS 基因的查找与分析[J].江苏农业学报,2016,(01):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
 ZHAO Liang,DI Jia-chun,CEHN Xu-sheng.Analysis of ent-copalyl diphosphate aynthase and ent-kaurene synthase (CPS&KS) gene family in cotton genome databases[J].,2016,(06):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
[2]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
 ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(06):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[3]杨长琴,刘瑞显,张国伟,等.花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Cellulose accumulation and fiber strength affected by drought during flowering and bolling stage in cotton[J].,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
[4]杨长琴,刘瑞显,张国伟,等.花铃期渍水对棉铃对位叶光合速率、物质累积及产量的影响[J].江苏农业学报,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Photosynthesis of subtending leaves of bolls, dry matter accumulation and cotton yield in response to waterlogging during flowering and boll-forming stage[J].,2015,(06):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
[5]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
 HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(06):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
[6]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
 LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(06):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[7]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
 AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(06):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[8]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
 WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(06):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[9]刘金龙,辛寒晓,范学明,等.盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J].江苏农业学报,2017,(03):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
 LIU Jin-long,XIN Han-xiao,FAN Xue-ming,et al.Effects of fish protein polypeptide on salt-stressed cherry tomato seed germination[J].,2017,(06):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(06):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[11]石婧,刘东洋,张凤华.不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价[J].江苏农业学报,2020,(04):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]
 SHI Jing,LIU Dong-yang,ZHANG Feng-hua.Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation[J].,2020,(06):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]

备注/Memo

备注/Memo:
收稿日期:2017-05-09 基金项目:江苏省科技项目(BK20150540);国家转基因生物新品种培育重大专项(2014ZX08005-004-002);江苏省农业科技自主创新基金项目[CX(14)5008] 作者简介:黄芳(1989-),女,湖南常宁人,硕士,主要从事棉花分子育种研究。(Tel)0513-85012820;(E-mail)18761726702@163.com 通讯作者:沈新莲,(Tel)025-84390291;(E-mail)xlshen68@126.com。汪保华,(Tel)0513-85012820;(E-mail)bhwang@ntu.edu.cn
更新日期/Last Update: 2018-01-03