参考文献/References:
[1]MAKKAR H P S, BECKER K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts[J]. Eur J Lipid Sci Tech, 2009, 111(8): 773-787.
[2]YANG C Y, FANG Z, LI B, et al. Review and prospects of Jatropha biodiesel industry in China[J]. Renew Sust Energ Rev, 2012, 16(4): 2178-2190.
[3]LIN J, ZHOU X, TANG K X, et al. A survey of the studies on the resources of Jatropha curcas L. [J]. J Trop Subtrop Bot, 2004, 12(3): 285-290.
[4]何璐,虞泓,范源洪,等. 麻疯树 (Jatropha curcas L.)植物学研究进展[J]. 长江流域资源与环境, 2010, 19 (S1): 120-127.
[5]王海燕,文明富,刘石生,等. 麻疯树生物学研究进展及其开发利用[J]. 热带作物学报, 2010, 31(4): 670-675.
[6]PAULETTE M. 14-3-3 proteins-an update[J]. Cell Res, 2005, 15(4): 228-236.
[7]MOORE B W, PEREZ V J. Specific acidic proteins of the nervous system[M]. Englewood Cliffs: Prentice Hall, 1968: 343-359.
[8]RANDT J, THORDAL-CHRISTENSEN H, VAD K, et al. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator[J]. Plant J, 1992, 2(5): 815-820.
[9]WU K, ROONEY M F, FERL R J. The Arabidopsis 14-3-3 multigene family[J]. Plant physiol, 1997, 114(4): 1421-1431.
[10]YANG X W, LEE W H, SOBOTT F, et al. Structural basis for protein-protein interactions in the 14-3-3 protein family[J]. P Natl Acad Sci USA, 2006, 103(46): 17237-17242.
[11]GANGULY S, WELLER J L, HO A, et al. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205[J]. P Natl Acad Sci USA, 2005, 102(4): 1222-1227.
[12]COBLITZ B, WU M, SHIKANO S, et al. C-terminal binding: an expanded repertoire and function of 14-3-3 proteins[J]. FEBS Lett, 2006, 580(6): 1531-1535.
[13]ANDREWS R K, HARRIS S J, MCNALLY T, et al. Binding of purified 14-3-3ζ signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex[J]. Biochem, 1998, 37(2): 638-647.
[14]PETOSA C, MASTERS S C, BANKSTON L A, et al. 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove[J]. J Biol Chemy, 1998, 273(26): 16305-16310.
[15]COMPAROT S, LINGIGH G, MARTIN T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism[J]. J Exp Bot, 2003, 54(382): 595-604.
[16]ISHIDA S, FUKAZAWA J, YUASA T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10): 2641-2651.
[17]DEL VISO F, CASARETTO J A, QUATRANO R S. 14-3-3 proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis[J]. Planta, 2007, 227(1): 167-175.
[18]VAN DEN WIGNGAARD P W, SINNIGE M P, ROOBEEK I, et al. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root[J]. Plant J, 2005, 41(1): 43-55.
[19]GAMPALA S S, KIM T W, HE J X, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Dev Cell, 2007, 13(2): 177-189.
[20]RYU H, CHO H, KIM K, et al. Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling[J]. Molecular Cells, 2010, 29(3): 283-290.
[21]SOLANO R, ECKER J R. Ethylene gas: perception, signaling and response[J]. Curr Opin Plant Biol, 1998, 1(5): 393-398.
[22]FOLTA K M, PAUL A L, MAYFIELD J D, et al. 14-3-3 isoforms participate in red light signaling and photoperiodic flowering[J]. Plant Signal Behav, 2008, 3(5): 304-306.
[23]HAYASHI M, INOUE S, TAKAHASHI K, et al. Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells[J]. Plant Cell Physiol, 2011, 52(7): 1238-1248.
[24]PIGNOCCHI C, DOONAN J H. Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1[J]. Ann Bot, 2011, 107(7): 1103-1109.
[25]KANCZEWSKA J, MARCO S, VANDERRMEEREN C, et al. Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 protein converts a dimmer into a hexamer[J]. P Natl Acad Sci USA, 2005, 102(33): 11675-11680.
[26]SHIN R, ALVAREZ S, BURCH A Y, et al. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes[J]. P Natl Acad Sci USA, 2007, 104(15): 6460-6465.
[27]KIDOU S I, UMEDA M, KATO A, et al. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene[J]. Plant Molar Biol, 1993, 21(1): 191-194.
[28]YAO Y, DU Y, JIANG L, et al. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa[J]. J Biochem Mol Biol, 2007, 40(3): 349-357.
[29]LI X Y, DHAUBHADEL S. Soybean 14-3-3 gene family: identification and molecular characterization[J]. Planta, 2011, 322(3): 569-582.
[30]XU W F, SHI W M. Expression profiling of the 14-3-3 gene family in response to salt and potassium and iron deficiencies in young tomato(Solanum lycopersicum) roots: analysis by real-time RT-PCR[J]. Ann Bot, 2006, 98(5): 965-974.
[31]李忠光,龚明. 不同化学消毒剂对小桐子种子萌发和幼苗生长的影响[J]. 种子, 2010, 30(2): 4-7, 12.
[32]SUN G,XIE F,ZHANG B.Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton(Gossypium hirsutum L.) [J]. Funct Integr Genomics, 2011, 11(4): 627-636.
[33]YAN J Q, HE C X, WANG J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a ‘Stay-Green’ phenotype andimproves stress tolerance under moderate drought conditions[J]. Plant Cell Physiol,2004, 45(8): 1007-1014.
[34]MAGNUS A, PAUL C, SEHNKE, et al. Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction[J]. Plant Cell Physiol, 2004, 45(9): 1202-1210.
[35]JAHN T, FUGLSANG A T, OLSSON A, et al. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase[J]. Plant Cell, 1997, 9(10): 1805-1814.
[36]OLSSON A, SVENNELID F, EK B, et al. A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding[J]. Plant Physiol, 1998, 118(2): 551-555.
[37]YANG Z M, NIAN H, SIVAGURU M, et al. Characterization of aluminum-induced citrate secretion in aluminum tolerant soybean(Glycine max L.) plants[J]. Physiol Plantarum, 2001, 113(1): 64-71.