[1]王海波,代冬琴,郭俊云.小桐子14-3-3基因家族的鉴定及低温胁迫应答[J].江苏农业学报,2017,(05):1007-1015.[doi:doi:10.3969/j.issn.1000-4440.2017.05.008]
 WANG Hai-bo,DAI Dong-qin,GUO Jun-yun.Genome-wide identification and chilling stress response of 14-3-3 gene family in Jatropha curcas[J].,2017,(05):1007-1015.[doi:doi:10.3969/j.issn.1000-4440.2017.05.008]
点击复制

小桐子14-3-3基因家族的鉴定及低温胁迫应答()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年05期
页码:
1007-1015
栏目:
遗传育种·生理生化
出版日期:
2017-10-30

文章信息/Info

Title:
Genome-wide identification and chilling stress response of 14-3-3 gene family in Jatropha curcas
作者:
王海波12代冬琴12郭俊云1
(1.曲靖师范学院云南高原生物资源保护与利用研究中心/生物资源与食品工程学院,云南曲靖655011;2.曲靖师范学院云南省高校云贵高原动植物遗传多样性及生态适应性重点实验室,云南曲靖655011)
Author(s):
WANG Hai-bo12DAI Dong-qin12GUO Jun-yun1
(1.Center for Yunnan Plateau Biological Resources Protection and Utilization/College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;2.Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing 655011, China)
关键词:
小桐子14-3-3蛋白基因组低温胁迫应答
Keywords:
Jatropha curcas14-3-3 proteingenomechilling stress response
分类号:
S794.9
DOI:
doi:10.3969/j.issn.1000-4440.2017.05.008
文献标志码:
A
摘要:
14-3-3蛋白家族在真核生物中广泛存在且高度保守,以同源/异源二聚体形式与2个靶蛋白或1个靶蛋白的两个磷酸化Ser/Thr模体结构域结合来发挥其调控作用。以拟南芥14-3-3蛋白为探针序列,对小桐子蛋白质数据库进行搜索,共鉴定到9个14-3-3基因,其中ε类4个、非ε类5个,并对其理化性质、系统进化、基因结构、顺式作用元件及低温胁迫表达等进行了分析。结果显示,小桐子14-3-3基因在进化上较为保守,存在该家族中典型的9段 α-螺旋结构,ε类基因结构包含7个外显子,非ε类包含 4~5个外显子。另外,在9个14-3-3基因上游调控区都鉴定到多个激素与逆境胁迫应答元件。qRT-PCR分析结果显示,包含有低温应答元件的Jc14-3-3b与Jc14-3-3h基因在小桐子的各组织器官中都有表达,但存在组织表达特异性,都在茎中表达量较高,其次是根,而在叶中表达量相对较低。同时,Jc14-3-3b与Jc14-3-3h基因都属于低温诱导表达基因,分别在茎与根中低温胁迫 0.5~30 h达到最大表达量,与小桐子的抗冷性形成直接相关。本研究为小桐子14-3-3基因家族的克隆与功能验证提供了参考。
Abstract:
The family of 14-3-3 proteins, which acts as homodimers or heterodimers, exists in all eukaryotic organisms with highly conserved sequence. The regulatory function of 14-3-3 proteins is mainly mediated by phosphoerine/phosphothreonine motifs with two targeting proteins or two different domains in one targeting protien simultaneously. Based on the conserved domains of Arabidopsis thaliana 14-3-3 protein as probe sequences, nine 14-3-3 genes including 4 ε-type and 5 non-ε type were identified from the Jatropha curcas protein database, and the physical and chemical characteristics, evolutionary relationship, gene structure, cis-elements, and chilling stress response were systematically analyzed. The result showed that 14-3-3 protein in J. curcas were highly conserved and classical 9-α-helix were found in all 14-3-3 proteins’ secondary structures. Seven exons were included in ε-type gene structure and 4-5 exons were in non-ε type. Multiple cis-elements responsive to different homones and environmental stresses were found in upstream sequences of each 14-3-3 genes in J. curcas. Quantitative RT-PCR revealed that Jc14-3-3b and Jc14-3-3h were expressed differently in different tissues, abundant in stem and root, scarce in leaf. Chilling responsive genes Jc14-3-3b and Jc14-3-3h reached the highest expression level in stem and root after 0.5-30 h chilling stress induction.

参考文献/References:

[1]MAKKAR H P S, BECKER K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts[J]. Eur J Lipid Sci Tech, 2009, 111(8): 773-787.
[2]YANG C Y, FANG Z, LI B, et al. Review and prospects of Jatropha biodiesel industry in China[J]. Renew Sust Energ Rev, 2012, 16(4): 2178-2190.
[3]LIN J, ZHOU X, TANG K X, et al. A survey of the studies on the resources of Jatropha curcas L. [J]. J Trop Subtrop Bot, 2004, 12(3): 285-290.
[4]何璐,虞泓,范源洪,等. 麻疯树 (Jatropha curcas L.)植物学研究进展[J]. 长江流域资源与环境, 2010, 19 (S1): 120-127.
[5]王海燕,文明富,刘石生,等. 麻疯树生物学研究进展及其开发利用[J]. 热带作物学报, 2010, 31(4): 670-675.
[6]PAULETTE M. 14-3-3 proteins-an update[J]. Cell Res, 2005, 15(4): 228-236.
[7]MOORE B W, PEREZ V J. Specific acidic proteins of the nervous system[M]. Englewood Cliffs: Prentice Hall, 1968: 343-359.
[8]RANDT J, THORDAL-CHRISTENSEN H, VAD K, et al. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator[J]. Plant J, 1992, 2(5): 815-820.
[9]WU K, ROONEY M F, FERL R J. The Arabidopsis 14-3-3 multigene family[J]. Plant physiol, 1997, 114(4): 1421-1431.
[10]YANG X W, LEE W H, SOBOTT F, et al. Structural basis for protein-protein interactions in the 14-3-3 protein family[J]. P Natl Acad Sci USA, 2006, 103(46): 17237-17242.
[11]GANGULY S, WELLER J L, HO A, et al. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205[J]. P Natl Acad Sci USA, 2005, 102(4): 1222-1227.
[12]COBLITZ B, WU M, SHIKANO S, et al. C-terminal binding: an expanded repertoire and function of 14-3-3 proteins[J]. FEBS Lett, 2006, 580(6): 1531-1535.
[13]ANDREWS R K, HARRIS S J, MCNALLY T, et al. Binding of purified 14-3-3ζ signaling protein to discrete amino acid sequences within the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX-V complex[J]. Biochem, 1998, 37(2): 638-647.
[14]PETOSA C, MASTERS S C, BANKSTON L A, et al. 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove[J]. J Biol Chemy, 1998, 273(26): 16305-16310.
[15]COMPAROT S, LINGIGH G, MARTIN T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism[J]. J Exp Bot, 2003, 54(382): 595-604.
[16]ISHIDA S, FUKAZAWA J, YUASA T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10): 2641-2651.
[17]DEL VISO F, CASARETTO J A, QUATRANO R S. 14-3-3 proteins are components of the transcription complex of the ATEM1 promoter in Arabidopsis[J]. Planta, 2007, 227(1): 167-175.
[18]VAN DEN WIGNGAARD P W, SINNIGE M P, ROOBEEK I, et al. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root[J]. Plant J, 2005, 41(1): 43-55.
[19]GAMPALA S S, KIM T W, HE J X, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Dev Cell, 2007, 13(2): 177-189.
[20]RYU H, CHO H, KIM K, et al. Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling[J]. Molecular Cells, 2010, 29(3): 283-290.
[21]SOLANO R, ECKER J R. Ethylene gas: perception, signaling and response[J]. Curr Opin Plant Biol, 1998, 1(5): 393-398.
[22]FOLTA K M, PAUL A L, MAYFIELD J D, et al. 14-3-3 isoforms participate in red light signaling and photoperiodic flowering[J]. Plant Signal Behav, 2008, 3(5): 304-306.
[23]HAYASHI M, INOUE S, TAKAHASHI K, et al. Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells[J]. Plant Cell Physiol, 2011, 52(7): 1238-1248.
[24]PIGNOCCHI C, DOONAN J H. Interaction of a 14-3-3 protein with the plant microtubule-associated protein EDE1[J]. Ann Bot, 2011, 107(7): 1103-1109.
[25]KANCZEWSKA J, MARCO S, VANDERRMEEREN C, et al. Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 protein converts a dimmer into a hexamer[J]. P Natl Acad Sci USA, 2005, 102(33): 11675-11680.
[26]SHIN R, ALVAREZ S, BURCH A Y, et al. Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes[J]. P Natl Acad Sci USA, 2007, 104(15): 6460-6465.
[27]KIDOU S I, UMEDA M, KATO A, et al. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene[J]. Plant Molar Biol, 1993, 21(1): 191-194.
[28]YAO Y, DU Y, JIANG L, et al. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa[J]. J Biochem Mol Biol, 2007, 40(3): 349-357.
[29]LI X Y, DHAUBHADEL S. Soybean 14-3-3 gene family: identification and molecular characterization[J]. Planta, 2011, 322(3): 569-582.
[30]XU W F, SHI W M. Expression profiling of the 14-3-3 gene family in response to salt and potassium and iron deficiencies in young tomato(Solanum lycopersicum) roots: analysis by real-time RT-PCR[J]. Ann Bot, 2006, 98(5): 965-974.
[31]李忠光,龚明. 不同化学消毒剂对小桐子种子萌发和幼苗生长的影响[J]. 种子, 2010, 30(2): 4-7, 12.
[32]SUN G,XIE F,ZHANG B.Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton(Gossypium hirsutum L.) [J]. Funct Integr Genomics, 2011, 11(4): 627-636.
[33]YAN J Q, HE C X, WANG J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a ‘Stay-Green’ phenotype andimproves stress tolerance under moderate drought conditions[J]. Plant Cell Physiol,2004, 45(8): 1007-1014.
[34]MAGNUS A, PAUL C, SEHNKE, et al. Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction[J]. Plant Cell Physiol, 2004, 45(9): 1202-1210.
[35]JAHN T, FUGLSANG A T, OLSSON A, et al. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase[J]. Plant Cell, 1997, 9(10): 1805-1814.
[36]OLSSON A, SVENNELID F, EK B, et al. A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding[J]. Plant Physiol, 1998, 118(2): 551-555.
[37]YANG Z M, NIAN H, SIVAGURU M, et al. Characterization of aluminum-induced citrate secretion in aluminum tolerant soybean(Glycine max L.) plants[J]. Physiol Plantarum, 2001, 113(1): 64-71.

相似文献/References:

[1]唐跃辉,包欣欣,王健,等.小桐子Dof基因家族生物信息学与表达分析[J].江苏农业学报,2019,(01):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]
 TANG Yue-hui,BAO Xin-xin,WANG Jian,et al.Bioinformatics and expression analysis of the Dof gene family in physic nut[J].,2019,(05):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]

备注/Memo

备注/Memo:
收稿日期:2017-04-02 基金项目:国家自然科学基金项目(31460179) 作者简介:王海波(1980-),男,山西长治人,博士,副教授,研究方向为植物逆境分子生物学。(E-mail)bocai0406@163.com
更新日期/Last Update: 2017-11-03