参考文献/References:
[1]CHAMAN M E, COPAJA S V, ARGANDONA V H. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation[J]. J Agric Food Chem, 2003, 51:2227-2231.
[2]ARIMURA G, OZAWA R, HORIUCHI J, et al. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites[J]. Biochem System Ecol, 2001, 29: 1049-1061.
[3]RAMIRO A D, GUERREIRO-FILHO O, MAZZAFERA P. Phenolcontents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella[J]. J Chem Ecol, 2006, 32: 1977-1988.
[4]BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants[J]. Science, 1983, 221: 277-279.
[5]BRUIN J, DICKE M, SABELIS M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics[J]. Experientia, 1992, 48: 525-529.
[6]KARBAN R, SHIOJIRI K, HUNTZINGER M, et al. Damage induced resistance in sagebrush: volatiles are key to intra and interplant communication[J]. Ecology, 2006, 87: 922-930.
[7]HIMANEN S J, BLANDE J D, KLEMOLA T, et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighboring plants-a mechanism for associational herbivore resistance? [J]. New Phytol, 2010, 186: 722-732.
[8]MARTIN H. Herbivore-induced plant volatiles: targets, perception and unanswered questions[J]. New Phytol, 2014, 204: 297-306.
[9]CASCONE P, LODICE L, MAFFEI M E, et al. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants[J]. J Plant Physiol, 2015, 173: 28-32.
[10]QIN Q J, SHI X Y, LIANG P, et al. Induction of phenylalanine ammonia-lyase and lipoxygenase by artificial damaged and aphid infestation in cotton seedlings[J]. Prog Nat Sci, 2005, 15: 419-423.
[11]KARBAN R. Communication between sagebrush and wild tobacco in the field[J]. Biochem Syst Ecol, 2001, 29: 995-1005.
[12]KARBAN R, Huntzinger M, McCall A C. The specificity of eavesdropping on sagebrush by other plants[J]. Ecology, 2004, 85: 1846-1852.
[13]DUBERY I A, SMIT F. Phenylalanine ammonia-lyase from cotton (Gossypium hirsutum) hypocotyls: properties of the enzyme induced by a Verticillium dahliae phytotoxin[J]. Biochem Biophys Acta, 1994,1207: 24-30.
[14]AXELROD B, CHEESBROUGH T M, LAAKSO S. Lipoxygenase from soybeans[J]. Methods Enzymol, 1981, 71:441-451.
[15]BRADFORD M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding[J]. Anal Biochem, 1976, 72 :248-254.
[16]FARMER E E. Surface-to-air signal[J]. Nature, 2001,411: 854-856.
[17]TURLINGS T C J, BENREY B. Effects of plant metabolites on the behavior and development of parasitic wasps[J]. Ecoscience, 1998, 5:321-333.
[18]TANG F, ZHAO W L, GAO X W. Communication between plants: induced resistance in poplar seedlings following herbivore infestation, mechanical wounding, and volatile treatment of the neighbors[J]. Entomol Exp Appl, 2013, 149:110-117.
[19]FELTON G W, SUMMERS C B, MUELLER A J. Oxidative response in soybean foliage to herbivory by bean leaf beetle and three cornered alfalfa hopper[J]. J Chem Ecol, 1994, 20: 639-650.
[20]CONSTABLE C P, BERGEY D R, RYAN C A. Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores[J]. Rec Adv Photochem, 1996, 30: 231-252.
[21]STOUT M J, BROVONT R A, DUFFEY S S. Effect of nitrogen availability onexpression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum[J]. J Chem Ecol, 1998, 24: 945-963.
[22]CONSTABLE C P, YIP L, PATTON J J, et al. Polyphenoloxidase from hybrid poplar cloning and expression in response to wounding and herbivory[J]. Plant Physio, 2000, 122(1):285-295.
[23]TURLINGS T C J, ALBORN H T, LOUGHRIN J H, et al. Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: Isolation and bioactivity[J]. J Chem Ecol, 2000, 26: 189-202.
[24]MYERS J H, WILLIAMS K S. Dose tent caterpillar attack reduce food quality of red alder foliage? [J]. Oecologia, 1984, 62: 456-457.
[25]PRESTON C A, LEWANDOWSKI C, ENYEDI A J, et al. Tobacco mosaic virus inoculation inhibits wound induced jasmonic acid-mediated response within but not between plants[J]. Planta, 1999, 209: 87-95.
[26]DICKE M. Evolution of induced indirect defence of plants[M]//RALPH T, DREW H C. The ecology and evolution of inducible defenses. New Jersey: Princeton University Press, 1990:62-88.
[27]TSCHARNTKE T, THIESSEN S, DOLCH R, et al. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa[J]. Biochem System Ecol, 2001, 29: 1025-1047.
[28]OUDEJANS A M C, BRUIN J. Dose spider-mite damage induce information transfer between plants of different species? [J]. Med Fac Landbouww Univ Gent, 1995, 59: 733-739.
[29]KARBAN R, BALDWIN I T, BAXTER K J, et al. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia, 2000, 25: 66-71.
[30]吕敏. 植物次生物质诱导棉蚜GSTs及害虫取食对棉花、小麦和玉米PAL和LOX的诱导作用[D].北京:中国农业大学,2011.
[31]RHOADES D F. Plant Resistance to Insects[M]. Washington DC: American Chemical Society Publication, 1983.
[32]ARIMURA G, TASHIRO K, KUHARA S,et al. Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles[J]. Biochem Biophys Res Commun, 2000, 277:305-310.
[33]ARIMURA G, OZAWA R, SHIMODA T, et al. Herbivory-induced volatiles induce the emission of ethylene in neighboring lima bean plants[J]. Plant J, 2002, 29:87-98.
[34]BATE N J, ROTHSTEIN S J. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes[J]. Plant J, 1998, 16:561-569.
[35]FARAG M A, PARE P W. C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato[J]. Phytochemistry, 2002, 61: 545-554.
[36]RUTHER J, KLEIER S. Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol[J]. J Chem Ecol, 2005, 31: 2217-2222.
[37]YAN Z G, WANG C Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize[J]. Phytochemistry, 2006, 67: 34-42.
相似文献/References:
[1]赵丽萍,李永灿,赵统敏,等.灰霉菌毒素诱导番茄抗性突变体及相关防御酶活性[J].江苏农业学报,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
ZHAO Li-ping,LI Yong-can,ZHAO Tong-min,et al.Resistant mutant induced by toxin of Botrytis cinerea in tomato and the activities of related defensive enzymes[J].,2016,(06):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
[2]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(06):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[3]姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
JIANG Jing,WANG Yin-lei,ZHAO Li-ping,et al.Selection of tomato reference genes for qRT-PCR[J].,2017,(06):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
[4]罗伟君,唐琳,周佳丽,等.纳米锌肥对番茄果实锌含量与品质的强化[J].江苏农业学报,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028
]
LUO Wei-jun,TANG Lin,ZHOU Jia-li,et al.Improvement of zinc concentration and quality of tomato fruit by nano zinc fertilizer[J].,2016,(06):184.[doi:10.3969/j.issn.1000-4440.2016.01.028
]
[5]乔俊卿,陈志谊,梁雪杰,等.枯草芽孢杆菌Bs916在番茄根部的定殖[J].江苏农业学报,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
QIAO Jun-qing,CHEN Zhi-yi,LIANG Xue-jie,et al.Colonization of Bacillus subtilis Bs916 on tomato root[J].,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
[6]吴淑华,赵文浩,李廷芳,等.南京辣椒上一种斑驳类型病毒病的分子鉴定[J].江苏农业学报,2015,(06):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
WU Shu-hua,ZHAO Wen-hao,LI Ting-fang,et al.Molecular identification of a virus causing mottle symptoms in pepper leaves in Nanjing[J].,2015,(06):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
[7]郭广君,孙茜,刘金兵,等.基于辣椒基因组重测序的InDel标记开发及应用[J].江苏农业学报,2015,(06):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
GUO Guang-jun,SUN Qian,LIU Jin-bing,et al.Development and application of pepper InDel markers based on genome re-sequencing[J].,2015,(06):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
[8]翟亚明,魏丽萍,杨倩.不同调控方式对设施盐渍化土壤特性和番茄产量及品质的影响[J].江苏农业学报,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
ZHAI Ya-ming,WEI Li-ping,YANG Qian.Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality[J].,2015,(06):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
[9]杨玛丽,赵统敏,余文贵,等.转基因 RNAi 技术在番茄研究中的应用[J].江苏农业学报,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
YANG Ma-li,ZHAO Tong-min,YU Wen-gui,et al.Progress in RNA interference technique applied in tomato[J].,2015,(06):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
[10]李廷芳,吴淑华,赵文浩,等.青海海东设施辣椒轻斑驳病毒的分子检测[J].江苏农业学报,2017,(04):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]
LI Ting-fang,WU Shu-hua,ZHAO Wen-hao,et al.Molecular detection of mild mottle virus isolated from pepper in Haidong, Qinghai province[J].,2017,(06):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]