参考文献/References:
[1]宋士清, 尚庆茂, 郭世荣, 等.壳聚糖对黄瓜幼苗抗盐的协同生理作用研究[J]. 西北植物学报, 2006, 26(3): 435-441.
[2]周娟, 邹礼平. 壳聚糖对盐胁迫下豇豆幼苗生长发育的影响[J]. 北方园艺, 2014(23): 30-33.
[3]王聪, 杨恒山, 董永义, 等. 外源壳聚糖对NaCl胁迫下菜用大豆光合作用及荧光特性的影响[J]. 西北植物学报, 2015, 35(6): 1198-1205.
[4]郁继华, 闫晓花, 张洁宝, 等. 壳聚糖对低温胁迫下辣椒幼苗活性氧产生和保护酶活性的影响[J]. 植物生理学通讯, 2007, 43(4): 725-726.
[5]马彦霞, 郁继华, 张国斌, 等. 壳聚糖对水分胁迫下辣椒幼苗氧化损伤的保护作用[J]. 中国农业科学, 2012, 45(10): 1964-1971.
[6]PONGPRAYOON W, ROYTRAKUL S, PICHAYANGKURA R, et al. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.) [J]. Plant Growth Regulation, 2013, 70: 159-173.
[7]CHEESEMAN J M. Mechanism of salinity tolerance in plants [J].Plant Physiology, 1988, 87: 547-550.
[8]钱琼秋, 宰文珊, 朱祝军, 等. 外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响[J]. 植物生理与分子生物学学报, 2006, 32 (1): 107-112.
[9]华春, 王仁雷, 刘友良. 外源AsA对盐胁迫下水稻叶绿体活性氧清除系统的影响[J]. 作物学报, 2004, 30(7): 692-696.
[10]蒋先明. 蔬菜栽培学总论[M]. 北京: 中国农业出版社, 2004:191.
[11]王聪, 朱月林, 杨立飞, 等. 菜用大豆耐盐品种的筛选及其耐盐生理特性[J]. 江苏农业学报, 2009, 25 (3): 621-627.
[12]孙锦. 菠菜对海水胁迫响应的生理机制研究[D]. 南京:南京农业大学, 2009: 61-62.
[13]ARNON D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris [J]. Plant Physiology, 1949, 24: 1-5.
[14]秦爱国, 于贤昌. 马铃薯抗坏血酸含量及其代谢相关酶活性关系的研究[J]. 园艺学报, 2009, 36(9): 1370-1374.
[15]王玉, 孔凡英, 尹波, 等. 过表达单脱氢抗坏血酸还原酶基因提高番茄抗UV-B胁迫能力[J]. 植物生理学报, 2014, 50 (1): 95-104.
[16]ASADA K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons [J].Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639.
[17]SHALATA A, MEUMANN P M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation [J]. Journal of Experimental Botany, 2001, 52(364): 2207- 2211.
[18]MUNNE-BOSCH S, ALEGRE L. Interplay between ascorbic acid and lipophilic antioxidant defences in hloroplasts of water- stressed Arabidopsis plants [J]. Febs Letters, 2002, 524: 145- 148.
[19]MAY M J, VERNOUX T, LEAVER C, et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development [J]. Journal of Experimental Botany, 1998, 49(321): 649-667.
[20]FOYER C H, NOCTOR G. The molecular biology and metabolism of glutathione [M]∥GRILL D, TAUSZ M, DE KOK L J, et al. Significance of glutathione in plant adaptation to the environment.Amsterdam:Kluwer Academic Publishers, 2001:27-57.
[21]ARTHUR J R. The glutathione peroxidase [J]. Cell Molecular Life Science, 2000, 57(13-14): 1825-1835.
[22]BERCZI A, MOLLER I M. Redox enzymes in the plant plasma membrane and their possible roles [J]. Plant, Cell & Environment, 2000, 23(12): 1287-1302.
[23]王菲菲, 丁明全, 邓澍荣, 等. 胡杨谷胱甘肽过氧化物酶基因的克隆及转化植株耐盐性分析[J]. 基因组学与应用生物学, 2012, 31(3): 231-239.
[24]CHANG CCC, SLESAK I, JORDA L, et al. Arabidopsis chloroplastic glutathione peroxidase play a role in cross talk between photooxidative stress and immune responses [J]. Plant Physiology, 2009, 150(2): 670-683.
[25]POVERO T, LORETI E, PUCCIARIELLO C,et al. Transcript profiling of chitosan-treated Arabidopsis seedlings [J]. Journal of Plant Research, 2011, 124: 619-629.
[26]LIU T T, LIU Z X, SONG C J,et al. Chitin-induced dimerization activates a plant immune receptor [J]. Science, 2012, 336 (6085): 1160-1164.
[27]CHINNUSAMY V, JAGENDORF A, ZHU J K. Understanding and improving salt tolerance in plants [J]. Crop Science, 2005, 45: 437-448.
[28]LINK V L, HOFMANN M G, SINHA A K, et al. Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defence-related stimuli [J]. Plant Physiology, 2002, 128 (1): 271-281.
相似文献/References:
[1]顾闽峰,王乃顶,王伟义,等.NaCl胁迫对结球甘蓝幼苗生长及体内离子分布的影响[J].江苏农业学报,2015,(03):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
GU Min-feng,WANG Nai-ding,WANG Wei-yi,et al.Growth and ion distribution of NaCl-stressed Brassica oleracea var.capitata seedlings[J].,2015,(05):638.[doi:10.3969/j.issn.1000-4440.2015.03.028]
[2]郭卫珍,张亚利,奉树成.NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J].江苏农业学报,2021,(03):562.[doi:doi:10.3969/j.issn.1000-4440.2021.03.003]
GUO Wei-zhen,ZHANG Ya-li,FENG Shu-cheng.Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J].,2021,(05):562.[doi:doi:10.3969/j.issn.1000-4440.2021.03.003]
[3]陈亚辉,张师瑒,杨庆山,等.多枝柽柳叶片响应NaCl胁迫的转录组分析[J].江苏农业学报,2022,38(05):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]
CHEN Ya-hui,ZHANG Shi-yang,YANG Qing-shan,et al.Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress[J].,2022,38(05):1188.[doi:doi:10.3969/j.issn.1000-4440.2022.05.005]