[1]张朝阳,程瑞,徐兵划,等.BSA联合转录组分析发掘西瓜叶片黄化候选基因[J].江苏农业学报,2024,(01):165-173.[doi:doi:10.3969/j.issn.1000-4440.2024.01.018]
 ZHANG Chao-yang,CHENG Rui,XU Bing-hua,et al.Identification of candidate genes for watermelon leaf yellowing based on BSA and transcriptome analysis[J].,2024,(01):165-173.[doi:doi:10.3969/j.issn.1000-4440.2024.01.018]
点击复制

BSA联合转录组分析发掘西瓜叶片黄化候选基因()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
165-173
栏目:
园艺
出版日期:
2024-01-30

文章信息/Info

Title:
Identification of candidate genes for watermelon leaf yellowing based on BSA and transcriptome analysis
作者:
张朝阳程瑞徐兵划顾妍黄大跃孙玉东
(江苏徐淮地区淮阴农业科学研究所/淮安市设施蔬菜重点实验室,江苏淮安223001)
Author(s):
ZHANG Chao-yangCHENG RuiXU Bing-huaGU YanHUANG Da-yueSUN Yu-dong
(Huaiyin Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province/Huaian Key Laboratory for Facility Vegetables, Huaian 223001, China)
关键词:
西瓜黄化BSA遗传图谱基因定位
Keywords:
watermelonetiolationBSAgenetic mapgene location
分类号:
S651.01
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.018
文献标志码:
A
摘要:
叶片是植物重要的功能器官之一,不仅是植株进行光合作用的主要场所,也可作为重要的形态标记,应用于育种中。叶片颜色作为形态标记,不仅可用于苗期杂种的清除,亦可用于种子纯度的测定。以西瓜全生育期叶片黄化突变体纯合自交系ly104为母本(P1)、绿叶自交系w3为父本(P2),通过杂交创制F1代、F2代、BC1代群体。遗传分析结果表明,该突变体的叶片黄化由单隐性基因控制。采用混合分组分析(BSA)进行初定位,通过简化基因组测序(RAD)开发全基因组单核苷酸多态性(SNP)标记构建西瓜高密度遗传图谱,将西瓜叶片黄化基因定位于2号染色体13 950 306~15 517 591 bp(大小约为1.57 Mb)。以西瓜97103v2为参考基因组,该区间包含24个注释基因。对P1(P1Y)、P2(P2G)和F2代群体中黄叶(F2Y)、绿叶(F2G)株系进行转录组水平分析,结果表明,目标区间内基因Cla97C02G035950、Cla97C02G036010、Cla97C02G036020、Cla97C02G036060在黄化叶片与正常绿叶材料中的表达量差异显著,可能是西瓜叶片的黄化候选基因。研究结果可为进一步解析西瓜叶片黄化基因功能和生物学特性奠定重要基础。
Abstract:
The leaf is one of the important functional organs of plants. It is not only the main place for photosynthesis of plants, but also can be used as an important morphological marker in breeding. As a morphological marker, leaf color can be used not only for removing hybrids at the seedling stage, but also for determining seed purity. In this study, F1, F2, and BC1 populations were created by hybridization, and the mutant homozygous inbred line ly104 in the whole growth period of watermelon was used as the female parent (P1), and the green leaf inbred line w3 was used as the male parent (P2). Genetic analysis showed that leaf yellowing was controlled by a single recessive gene. The bulked segregant analysis (BSA) was used for primary mapping, and genome-wide single nucleotide polymorphism (SNP) markers were developed by restriction-site associated DNA-sequencing (RAD) to construct a high-density genetic map of watermelon. The watermelon leaf yellowing gene was localized on chromosome 2 at 13 950 306-15 517 591 bp (about 1.57 Mb). Watermelon 97103v2 was used as the reference genome and the interval contained 24 annotated genes. The transcriptome levels of P1 (P1Y), P2 (P2G) and yellow leaf (F2Y) and green leaf (F2G) lines in F2 population were analyzed. The results showed that the expression levels of Cla97C02G035950, Cla97C02G036010, Cla97C02G036020 and Cla97C02G036060 in the target interval were significantly different between etiolated leaves and normal green leaves. These genes might be candidate genes for etiolation of watermelon leaves. The results of this study can lay an important foundation for further analysis of the function and biological characteristics of watermelon leaf yellowing genes.

参考文献/References:

[1]陈婷婷,符卫蒙,余景,等. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学,2022,55(3):467-478.
[2]徐明远,何鹏,赖伟,等. 植物叶色变异分子机制研究进展[J]. 分子植物育种,2021,19(10):3448-3455.
[3]马道承,王凌晖,梁机. 形态标记在植物中的应用研究进展[J]. 江苏农业科学,2022,50(8):55-62.
[4]杨小苗. 番茄EMS突变体库的构建及叶色黄化突变体的分析[D]. 沈阳: 沈阳农业大学,2017.
[5]刘忠学,张渝竣,刘林,等. 水稻黄绿叶突变体yellow-green leaf4的表型鉴定及候选基因定位和功能分析[J]. 南京农业大学学报,2022,45(4):627-636.
[6]徐薪璐,蔡鸥,秦敏,等. 植物叶色变异研究进展[J/OL]. 分子植物育种:1-8
[2022-11-21].http://kns.cnki.net/kcms/detail/46.1068.S.20220517.1326.020.html.
[7] ZHANG H T, LI J J, YOO J H, et al. Rice chlorine-1 and chlorine-9 encode ChlD and ChloI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development[J]. Plant Molecular Biology,2006,62(3):325-337.
[8] SUGLIA M, ABDELKEFI H, KE H, et al. An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis[J]. Plant Cell,2016,28:661-679.
[9]李素贞,杨文竹,陈茹梅. 水稻黄绿叶突变体研究进展[J]. 生物技术通报,2018,34(11):15-21.
[10]赵绍路,刘凯,宛柏杰,等. 水稻叶色突变研究进展[J]. 大麦与谷类科学,2018,35(6):1-6.
[11]张文慧,杨宜豪,陈铭蔚,等. 水稻一新黄绿叶突变体ygl10-2(t)的遗传分析与基因定位[J]. 扬州大学学报(农业与生命科学版),2019,40(1):1-7.
[12]陈桂华,王悦,熊跃东,等. 水稻叶色突变体xws的基因定位与育种利用[J]. 分子植物育种,2018,16(1):155-162.
[13]李秦,杜何为. 玉米叶色突变体研究进展[J].南方农业,2019,13(28):14-21,27.
[14] NAGATA N, TANAKA R, SATOH S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species[J]. Plant Cell,2005,17(1):233-240.
[15]王萌,赵虎,赵曾菁,等. 辣椒彩色斑叶突变体叶片显微结构及超微结构研究[J]. 西北植物学报,2022,42(4):600-608.
[16]赖艳,付秋实,吕建春,等. 一个新的薄皮甜瓜叶色突变体的生理特性及超微结构分析[J]. 四川农业大学学报,2018,36(3):372-379.
[17]朱华玉,张凯歌,宋芃垚,等. 甜瓜黄绿叶色性状的遗传分析及其初步定位[J]. 河南农业大学学报,2019,53(6):855-860.
[18]陈远良,刘新宇,李树贤. 黄瓜黄绿色叶片颜色遗传规律研究[J]. 北方园艺,2000(5):3-4.
[19]XIONG L R, DU H, ZHANG K Y, et al. A mutation in CsYL2.1 encoding a plastid isoform of triose phosphate isomerase leads to yellow leaf 2.1 (yl2.1) in cucumber (Cucumis sativus L.)[J]. International Journal of Molecular Sciences,2020,22(1):322.
[20]PROVVIDENTI R. Inheritance of a partial chlorophyll deficiency in watermelon activated by low temperatures at the seedling stage[J]. Horticulture Science,1994,29(9):1062-1063.
[21] ZHANG X P, RHODES B B, BAIRD W V, et al. Development of genic male-sterile watermelon lines with delayed-green seedling marker[J]. Horticulture Science,1996,31(1):123-126.
[22]侯艳,朱子成,朱娜娜,等. EMS诱变西瓜突变体库的构建及表型分析[J]. 西北植物学报,2016,36(12):2411-2420.
[23]徐铭,高美玲,郭宇,等.西瓜后绿突变体光合特性分析[J]. 西北农林科技大学学报(自然科学版),2022,50(3):91-96,106.
[24]任艺慈,朱迎春,孙德玺,等. 一个西瓜叶色黄化突变体的生理特性分析[J]. 果树学报,2020,37(4):565-573.
[25] ZHU Y, YUAN G, WANG Y, et al. Mapping and functional verification of leaf yellowing genes in watermelon during whole growth period[J]. Frontiers in Plant Science,2022,13:1049114.
[26] GUO S G, ZHANG J G, SUN H H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature Genetics,2013,45:51-58.
[27] GUO S G, ZHAO S J, SUN H H, et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nature Genetics,2019,51(11):1616-1623.
[28] WU S, WANG X, REDDY U, et al. Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1 365 accessions in the U.S. National Plant Germplasm System watermelon collection[J]. Plant Biotechnology Journal,2019,17(12):2246-2258.
[29] LILI M, QING W, YANYAN Z, et al. Cucurbitaceae genome evolution, gene function, and molecular breeding[J]. Horticulture Research,2022,9:uhab057.
[30] KIDANEMARIAM H G.西瓜叶色后绿和植株短蔓性状的遗传与分子机制研究[D]. 北京:中国农业科学院,2020.
[31] 周雨晴,郭宇玲,伊然,等. 基于BSA-Seq的黄瓜重要园艺性状遗传定位研究进展[J/OL]. 分子植物育种:1-12
[2023-10-10].http://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html.
[32]张菊平,张长远,张树珍.苦瓜基因组DNA提取和RAPD分析[J]. 广东农业科学,2002(4):18-20.
[33] LI H. Aligning sequence reads, clone sequences, and assembly contigs with BWA-MEM[J]. arXiv,2013,1303.3997v2 [q-bio.GN]. DOI:10.48550/ARXIV.1303.3997.
[34] VAN DER AUWERA G A, CARNEIRO M O, HARTL C, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline[J]. Current Protocols in Bioinformatics,2013,43(1110):1-33.
[35] CINGOLANI P, PLATTS A, WANG L L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly,2012,6(2):80-92.
[36] STAM P. Construction of integrated genetic linkage maps using a new computer package:JoinMap[J]. The Plant Journal,1993,3(5):739-744.
[37] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature Biotechnology,2019,37(8):907-915.
[38]崔慧琳,李志远,方智远,等. 结球甘蓝自交系YL-1的高效遗传转化体系的建立及应用[J]. 园艺学报,2019,46(2):345-355.
[39]张天雨,周春雷,刘喜,等. 一个水稻温敏黄化突变体的表型分析和基因定位[J]. 作物学报,2017,43(10):1426-1433.
[40]姚建刚,张 贺,许向阳,等. 番茄叶色突变体的弱光耐受性研究[J]. 中国蔬菜,2010(4):31-35.
[41] SUN J L, TIAN Y Y, LIAN Q C, et al. Mutation of DELAYED GREENING impairs chloroplast RNA editing at elevated ambient temperature in Arabidopsis[J]. Journal of Genetics and Genomics,2020,47(4):201-212.
[42]孙立亭,林添资,王云龙,等. 水稻白条纹突变体st13的表型分析及基因定位[J]. 中国水稻科学,2017,31(4):355-363.
[43]王飞,段世名,李彤,等. 玉米叶色突变体遗传分析及基因定位[J]. 植物遗传资源学报,2018,19(6):1205-1209.
[44]蒋宏宝. 小麦叶绿素缺失突变体B23的鉴定及基因定位[D]. 杨凌:西北农林科技大学,2018.
[45] GAO M L, HU L L, LI Y H, et al. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for the magnesium chelatase I subunit[J]. Theoretical and Applied Genetics,2016,129(10):1961-1973.
[46]郭丽杰. 番茄杂色叶基因vg的遗传定位分析[D]. 武汉:华中农业大学,2017.
[47]RHODES B B. Genes affecting foliage color in watermelon[J]. Journal of Heredity,1986,77(2):134-135.
[48]秦涛,刘新社. 氮钾肥配施对土壤微生物与西瓜形态建成、品质、产量的影响[J]. 江苏农业科学,2022,50(16):154-161.
[49]杨柳,况佳颖,任春梅,等. 江苏省主要葫芦科作物病毒种类及分布[J]. 江苏农业学报,2022,38(1):65-72.
[50]胡晨曦,张甜,陈刚,等. 不同嫁接方式对西瓜幼苗生长和生理的影响[J]. 江苏农业科学,2022,50(1):139-143.
[51]何毅,解华云,陈东奎,等. 设施与露地兼用型优质西瓜新品种桂玲的选育[J]. 南方农业学报,2023,54(4):1216-1223.
[52]高美玲,刘小松,刘秀杰,等. 基于GBS高密度遗传图谱初步定位西瓜种皮斑块基因[J]. 分子植物育种,2022,20(1):186-192.
[53]李兵兵,刘文革,路绪强,等. 基于全基因组重测序构建西瓜高密度遗传图谱和果实相关性状的基因定位[J]. 中国瓜菜,2019,32(8):164-165.
[54] KIKUCHI S, ASAKURA Y, IMAI M, et al. A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import[J]. Plant Cell,2018,30(11):2677-2703.
[55] PARKER N, WANG Y X, MEINKE D. Analysis of Arabidopsis accessions hypersensitive to a loss of chloroplast translation[J]. Plant Physiology,2016,172(3):1862-1875.
[56] HUANG J L, SUN G L, ZHANG D M. Molecular evolution and phylogeny of the angiosperm ycf2 gene[J]. Journal of Systematics and Evolution,2020,48(4):240-248.
[57] DRESCHER A, RUF S, JR CALSA T, et al. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes[J]. Plant Journal,2000,22(2):97-104.

相似文献/References:

[1]王夏雯,余翔,乔俊卿,等.西瓜茬后种植稻麦对土壤微生物数量和西瓜枯萎病发生的影响[J].江苏农业学报,2015,(06):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
 WANG Xia-wen,YU Xiang,QIAO Jun-qing,et al.Effect of rice-wheat rotation after watermelon season on the amount of soil microbes and the incidence of Fusarium wilt[J].,2015,(01):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
[2]王玮,汪国莲,梁双林,等.叶面喷施氨基多糖硒肥对西瓜生长及产量品质的影响[J].江苏农业学报,2019,(06):1413.[doi:doi:10.3969/j.issn.1000-4440.2019.06.021]
 WANG Wei,WANG Guo-lian,LIANG Shuang-lin,et al.Effects of selenium-aminopolysaccharide fertilizer on growth, yield and quality of watermelon[J].,2019,(01):1413.[doi:doi:10.3969/j.issn.1000-4440.2019.06.021]
[3]徐彦刚,姚协丰,李良俊,等.西瓜品种(品系)对蔓枯病的抗性鉴定与评价[J].江苏农业学报,2021,(01):106.[doi:doi:10.3969/j.issn.1000-4440.2021.01.014]
 XU Yan-gang,YAO Xie-feng,LI Liang-jun,et al.Identification and evaluation of the resistance to gummy stem blight caused by Stagonosporopsis citrulli of some watermelon varieties (strains)[J].,2021,(01):106.[doi:doi:10.3969/j.issn.1000-4440.2021.01.014]
[4]孟佳丽,吴绍军,沈虹,等.不同药剂处理对西瓜连作土壤的影响[J].江苏农业学报,2021,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
 MENG Jia-li,WU Shao-jun,SHEN Hong,et al.Effects of different chemical treatments on continuous cropping soil of watermelon[J].,2021,(01):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
[5]刘欣,程瑞,徐兵划,等.基于KASP技术的SNP标记用于西瓜品种指纹图谱构建和种子纯度检测[J].江苏农业学报,2022,38(05):1348.[doi:doi:10.3969/j.issn.1000-4440.2022.05.022]
 LIU Xin,CHENG Rui,XU Bing-hua,et al.Application of SNP markers based on KASP technology in fingerprint construction and seed purity detection of watermelon varieties[J].,2022,38(01):1348.[doi:doi:10.3969/j.issn.1000-4440.2022.05.022]

备注/Memo

备注/Memo:
收稿日期:2022-11-28基金项目:淮安市农业科学研究院发展基金项目(HAN201714);淮安市自然科学研究技术专项(HAB202079);国家西甜瓜产业技术体系淮安综合试验站项目(CARS-25)作者简介:张朝阳(1982-),男,江苏连云港人,硕士,副研究员,从事西甜瓜遗传育种研究。(E-mail)287362703@qq.com。程瑞为共同第一作者。通讯作者:孙玉东,(E-mail)sunyudong@jaas.ac.cn
更新日期/Last Update: 2024-03-17