[1]龚镇洪,余彬彬,黄盼盼,等.罗红霉素对小麦硝态氮和铵态氮吸收动力学的影响[J].江苏农业学报,2022,38(04):882-888.[doi:doi:10.3969/j.issn.1000-4440.2022.04.003]
 GONG Zhen-hong,YU Bin-bin,HUANG Pan-pan,et al.Effects of roxithromycin on the absorption kinetics of nitrate nitrogen and ammonium nitrogen in wheat[J].,2022,38(04):882-888.[doi:doi:10.3969/j.issn.1000-4440.2022.04.003]
点击复制

罗红霉素对小麦硝态氮和铵态氮吸收动力学的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
882-888
栏目:
遗传育种·生理生化
出版日期:
2022-08-31

文章信息/Info

Title:
Effects of roxithromycin on the absorption kinetics of nitrate nitrogen and ammonium nitrogen in wheat
作者:
龚镇洪1余彬彬123黄盼盼4汪晓丽1钱晓睛1
(1.扬州大学农业农村部耕地质量监测与评价重点实验室,江苏扬州225127;2.南开大学环境污染过程与基准教育部重点实验室,天津300071;3.农业部产地环境污染防控重点实验室/天津市农业环境与农产品安全重点实验室,天津300071;4.山东省东营市生态环境局,山东东营257100)
Author(s):
GONG Zhen-hong1YU Bin-bin123HUANG Pan-pan4WANG Xiao-li1QIAN Xiao-qing1
(1.Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, China;2.Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China;3.Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin 300071, China;4.Dongying City Ecological Environment Bureau, Shandong, Dongying 257100, China)
关键词:
罗红霉素小麦硝态氮铵态氮吸收动力学
Keywords:
roxithromycinwheatnitrate nitrogenammonium nitrogenabsorption kinetics
分类号:
X592
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.003
文献标志码:
A
摘要:
为明确在抗生素胁迫下小麦对不同形态无机氮的吸收特性,通过水培的方式,以硝态氮(NO-3-N)、铵态氮(NH+4-N)分别作为单一氮源,设置7个浓度水平的NO-3-N、NH+4-N和5个质量浓度水平的罗红霉素(Roxithromycin, ROX)组合,以不含ROX处理为对照(CK),探究在ROX胁迫下小麦根系对NO-3-N和NH+4-N的吸收动力学特征的变化。结果表明:(1)在不同质量浓度ROX胁迫下,小麦对NO-3-N、NH+4-N的最大吸收速率随氮浓度的增高而增加,吸收特征符合Michaelis-Menten动力学模型;与CK相比,不同质量浓度ROX胁迫对2种形态无机氮的最大吸收速率均表现为促进作用;(2)随着ROX胁迫质量浓度的增加,小麦对NO-3-N的最大吸收速率(Vmax)持续增加,Km值持续降低,吸收能力(α)持续增加;对NH+4-N的Vmax、Km值均持续增加,α值先增后降;(3)在10.0 mg/L ROX胁迫下,小麦对NO-3-N的吸收能力高于对NH+4-N的吸收能力,而在0.1 mg/L、0.5 mg/L和1.0 mg/L ROX胁迫下,小麦对NH+4-N的吸收能力超过对NO-3-N的吸收能力。
Abstract:
To clarify the absorption characteristics of different forms of inorganic nitrogen under antibiotic stress, hydroponics was used to cultivate wheats. Nitrate nitrogen (NO-3-N) and ammonium nitrogen (NH+4-N) were used as single nitrogen sources, respectively. Seven concentration levels of NO-3-N, NH+4-N and five concentration levels of roxithromycin (ROX) were established, and the treatment without ROX was used as control (CK). The absorption kinetics characteristics of NO-3-N and NH+4-N in wheat roots were explored under ROX stress. The results revealed that the maximum absorption rate of NO-3-N and NH+4-N in wheat increased with the increase of nitrogen concentration under different mass concentrations of ROX, and the absorption characteristics conformed to Michaelis-Menten equation. Compared with CK, different concentrations of ROX had a promoting effect on the maximum absorption rate of the two forms of inorganic nitrogen. With the increase of ROX concentration, the maximum adsorption rate (Vmax) and absorptive capacity (α)of wheat to NO-3-N increased continuously, and the Km value decreased continuously. In addition, the Vmax and Km values of wheat to NH+4-N increased continuously, and the α value increased firstly and then decreased. Under the stress of 10.0 mg/L ROX, the absorption capacity of wheat to NO-3-N was higher than that to NH+4-N. On the contrary, under the stress of 0.1 mg/L ROX, 0.5 mg/L ROX and 1.0 mg/L ROX, the absorption capacity of wheat to NH+4-N was higher than that to NO-3-N.

参考文献/References:

[1]成玉婷,吴小莲,向垒,等. 广州市典型有机蔬菜基地土壤中磺胺类抗生素污染特征及风险评价[J]. 中国环境科学, 2017, 37(3): 1154-1161.
[2]VAN BOECKEL T P, GLENNON E E, CHEN D, et al. Reducing antimicrobial use in food animals[J]. Science, 2017, 357(6358): 1350-1352.
[3]YASMIN K K, BARKAT A, ZHANG S, et al. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis[J]. Science of the Total Environment, 2021, 778: 14633.
[4]朱宇恩,苗佳蕊,郑静怡,等. 汾河沿岸农田土壤喹诺酮类抗生素残留特征及风险评估[J]. 环境科学学报, 2019, 39(6): 1989-1998.
[5]GERD H, SILKE S, HEINRICH H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2002, 74(7): 1509-1518.
[6]赵英姿,徐振,颜冬云,等. 大环内酯类抗生素在土壤中的迁移转化与毒性效应分析[J].土壤, 2014, 46(1): 23-28.
[7]王晓洁,赵蔚,张志超,等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 2021, 51(6): 615-636.
[8]LI J, MIN Z, LI W, et al. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 191(C): 110156.
[9]梁惜梅,施震,黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2): 304-310.
[10]罗庆,孙丽娜,胡筱敏. 固相萃取-高效液相色谱法测定畜禽粪便中罗红霉素和3种四环素类抗生素[J]. 分析试验室, 2014, 33(8): 885-888.
[11]欧立军,康林玉,赵激,等. 作物氮素吸收与利用研究进展[J]. 北方园艺, 2018 (7): 151-156.
[12]熊淑萍,吴克远,王小纯,等. 不同氮效率小麦品种苗期根系氮代谢及其吸收能力差异分析[J]. 麦类作物学报, 2016, 36(3): 325-331.
[13]XU G W, JIANG M M, LU D K, et al. Nitrogen forms affect the root characteristic, photosynthesis, grain yield, and nitrogen use efficiency of rice under different irrigation regimes[J]. Crop Science, 2020, 60(5): 2594-2610.
[14]田霄鸿,李生秀,王清君. 几种作物NO-3吸收动力学参数测定方法初探[J]. 土壤通报, 2001(1): 16-18,31.
[15]MATT P, GEIGER M, WALCH-LIU P, et al. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate[J]. Plant, Cell & Environment, 2001, 24(11): 1119-1137.
[16]王晓冬,王成,马智宏,等. 短期NaCl胁迫对不同小麦品种幼苗K+吸收和Na+、K+积累的影响[J]. 生态学报, 2011, 31(10): 2822-2830.
[17]陈旭,杨习文,李文,等. 不同氮素利用效率小麦苗期的根系形态数量性状分析[J]. 麦类作物学报, 2021, 41(2): 174-182.
[18]华海霞,梁永超,娄运生,等. 水稻硅吸收动力学参数固定方法的研究[J]. 植物营养与肥料学报, 2006, 12(3): 358-362.
[19]汪晓丽,陶玥玥,盛海君,等. 硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J]. 麦类作物学报, 2010, 30(1): 129-134.
[20]INGRID I, DANILO D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method[J]. Pergamon, 1984, 18(9): 1143-1147.
[21]李诗奇,张彦浩,李政,等. 大叶藻对氮磷营养盐的吸收动力学特征[J]. 植物生态学报, 2020, 44(7): 772-781.
[22]张鹏,张然然,都韶婷. 植物体对硝态氮的吸收转运机制研究进展[J]. 植物营养与肥料学报, 2015, 21(3): 752-762.
[23]丁效东,张士荣. NaCl对大麦硝态氮吸收动力学特征的影响[J]. 中国生态农业学报, 2015, 23(11): 1423-1428.
[24]张天莹. 两种典型抗生素对小麦幼苗生态毒性效应的影响[D]. 扬州: 扬州大学, 2020.
[25]应蓉蓉,杜锁军,胡鹏杰,等. 长柔毛委陵菜对锌的吸收动力学特性[J]. 应用生态学报, 2008, 19(6): 1349-1354.
[26]张超一,樊小林. 铵态氮及硝态氮配比对香蕉幼苗氮素吸收动力学特征的影响[J]. 中国农业科学, 2015, 48(14): 2777-2784.
[27]HEISW T, SMOLDERS A J P, RIJKENS B G A, et al. Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH[J]. Oecologia, 2008, 158(3): 411-419.
[28]BRITTO D T, KRONZUCKER H J. NH+4 toxicity in higher plants: A critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567-584.
[29]王波,赖涛,沈其荣. 不同铵硝配比营养液对典型生菜硝酸盐吸收动力学的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1098-1104.
[30]蒋廷惠,郑绍建,石锦芹,等. 植物吸收养分动力学研究中的几个问题[J]. 植物营养与肥料学报, 1995, 1(2): 11-17.
[31]童依平,蔡超,刘全友,等. 植物吸收硝态氮的分子生物学进展[J]. 植物营养与肥料学报, 2004, 10(4): 433-440.
[32]HE M Z, DIJKSTRA F A. Drought effect on plant nitrogen and phosphorus: a meta-analysis[J]. New Phytologist, 2014, 204(4): 924-931.
[33]赵越,马凤鸣,张多英. 甜菜对不同氮素吸收动力学的研究[J]. 东北农业大学学报, 2006, 37(3): 294-298.
[34]林咸永,章永松,罗安程,等. 铝胁迫下不同小麦基因型根际pH的变化、NH+4和NO-3吸收及还原与其耐铝性的关系[J].植物营养与肥料学报, 2002, 8(3): 330-334.
[35]NICOLAUS V W, SONIA G, ALAIN G, et al. The molecular physiology of ammonium uptake and retrieval[J]. Current Opinion in Plant Biology, 2000, 3(3): 254-261.
[36]YU X L, CHEN J H, LIU X X, et al. The mechanism of uptake and translocation of antibiotics by pak choi (Brassica rapa subsp. chinensis).[J]. The Science of the Total Environment, 2021, 810: 151748.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(04):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(04):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(04):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(04):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(04):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(04):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(04):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(04):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(04):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2021-10-23基金项目:国家自然科学基金项目(31500425);江苏省自然科学基金青年科技人才项目(BK20150452);农业部产地环境污染防控重点实验室/天津市农业环境与农产品安全重点实验室开放基金课题(16nybcdhj-4);环境污染过程与基准教育部重点实验室(南开大学)开放基金课题 (KL-PPEC-2016-3)作者简介:龚镇洪(1998-),男,江苏常熟人,硕士研究生,主要从事植物生态毒理学研究。(E-mail)1441905782@qq.com通讯作者:余彬彬,(E-mail)bbyu@yzu.edu.cn
更新日期/Last Update: 2022-09-06