[1]刘智,张虹,罗会婷,等.不同种植模式下凤丹根际微生物群落结构和多样性分析[J].江苏农业学报,2022,38(02):502-511.[doi:doi:10.3969/j.issn.1000-4440.2022.02.026]
 LIU Zhi,ZHANG Hong,LUO Hui-ting,et al.Analysis on community structure and diversity in rhizosphere microorganisms of Paeonia ostii under different planting patterns[J].,2022,38(02):502-511.[doi:doi:10.3969/j.issn.1000-4440.2022.02.026]
点击复制

不同种植模式下凤丹根际微生物群落结构和多样性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
502-511
栏目:
园艺
出版日期:
2022-04-30

文章信息/Info

Title:
Analysis on community structure and diversity in rhizosphere microorganisms of Paeonia ostii under different planting patterns
作者:
刘智1张虹12罗会婷1王仲伟1汤诗杰1
(1.江苏省中国科学院植物研究所,江苏南京210014;2.南京中医药大学研究生院,江苏南京210046)
Author(s):
LIU Zhi1ZHANG Hong12LUO Hui-ting1WANG Zhong-wei1TANG Shi-jie1
(1.Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;2.Graduate School, Nanjing University of Chinese Medicine, Nanjing 210046, China)
关键词:
凤丹根际微生物高通量测序微生物多样性微生物群落结构
Keywords:
Paeonia ostiirhizosphere microorganismshigh-throughput sequencingmicrobial diversitymicrobial community structure
分类号:
S154.3
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.026
文献标志码:
A
摘要:
为探究不同种植模式下凤丹根际微生物群落结构和多样性,采用高通量测序技术对采自榉树(Zelkova serrata)下种植(ZS)、娜塔栎(Quercus nattallii)下种植(QS)、露天种植(OS)的凤丹根际以及空白土壤(CK)样品土壤细菌和真菌进行测序。结果显示,与空白土壤相比,种植凤丹提高了根际微生物群落的丰富度和多样性,不同种植模式下凤丹根际微生物群落结构有所差异。3种种植模式下细菌的优势菌门均为变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)以及疣微菌门(Verrucomicrobia),但不同种植模式下每个门的相对丰度有所差异。所有样品中总共检测出12个真菌门,3种种植模式下真菌的优势菌门均为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),不同种植模式下各真菌门的相对丰度存在差异;属水平上真菌群落结构差异较大,ZS组、QS组和OS组的优势菌属分别为Exophiala、Thelephoraceae_unclassified、Ascomycota_unclassified。测定3种种植模式下凤丹的生长指标,发现林下种植的凤丹株高、叶长、叶宽均高于露天种植。林下种植模式的细菌需氧表型、革兰氏阴性表型、生物膜形成表型以及致病潜力表型高于单一种植模式。本研究从根际微生物角度分析了不同种植模式对凤丹的影响,为凤丹林下种植提供参考,为后续促生菌筛选、菌肥研制提供理论支撑。
Abstract:
In order to explore the rhizosphere microbial community structure and diversity of Paeonia ostii under different planting patterns, high-throughput sequencing technology was used to sequence the rhizosphere soil samples of Paeonia ostii collected from three different planting patterns, namely Zelkova serrata (ZS), Quercus nattallii (QS) and open-air planting (OS) and blank soil(CK). The results showed that compared with the blank soil, planting Paeonia ostii increased the richness and diversity of rhizosphere microbial community, and the rhizosphere microbial community structure of Paeonia ostii was different under different planting patterns. The dominant phyla of bacteria under three planting patterns were Proteobacteria, Acidobacteria, Actinobacteria and Verrucomicrobia, but the relative abundance of each phylum under different planting patterns was different. A total of 12 fungal phyla were detected in all samples. The dominant phyla of fungi under three planting modes were Ascomycota and Basidiomycota, and the relative abundance of each fungal phylum was different under different planting patterns. The fungal community structure was quite different at genus level, and the dominant genera in ZS group, QS group and OS group were Exophiala, Thelephoraceae_unclassified and Ascomycota_unclassified, respectively. The growth indices of Paeonia ostii under three planting patterns were measured, plant height, leaf length and leaf width of Paeonia ostii planted under forest were higher than those planted in open field. The aerobic phenotype, Gram-negative phenotype, forms biofilms phenotype and potentially pathogenic phenotype in cultivation pattrerns under forest were higher than those in single planting mode. In this study, the effects of different planting patterns on Paeonia ostii were analyzed from the perspective of rhizosphere microorganisms, so as to provide reference for understory planting of Paeonia ostii, and provide theoretical support for subsequent screening of probiotics and development of bacterial fertilizer.

参考文献/References:

[1]张姗姗,赵凡,魏小豹,等. 凤丹和紫斑牡丹6个产地种子脂肪酸组分的比较[J]. 中国粮油学报, 2021, 36(3): 84-90.
[2]谢一青,吴庆锥,余孟杨,等. 凤丹南移福建的适应性分析[J]. 热带作物学报, 2021,42(2): 592-598.
[3]王仲伟,王欢利,张文献,等. 江苏油用牡丹的发展思考[J]. 江苏林业科技, 2016, 43(6): 53-55.
[4]裴姿琛,胡永宏,刘泽,等. 新型木本油料作物——油用牡丹的开发和利用[J]. 林业与生态科学, 2018, 33(4): 358-363.
[5]王勇,何舒,熊冰杰,等. 不同栽培模式对人参根际土壤微生物多样性的影响研究[J]. 中草药, 2021, 52(17): 5303-5310.
[6]刘王锁,李海泉,何毅,等. 根际微生物对植物与土壤交互调控的研究进展[J]. 中国土壤与肥料, 2020(5): 318-327.
[7]KHAN N, ALI S, SHAHID M , et al. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review[J]. Cells,2021,10(6): 1551
[8]SONG Y, LI X, YAO S, et al. Correlations between soil metabolomics and bacterial community structures in the pepper rhizosphere under plastic greenhouse cultivation[J]. Science of the Total Environment, 2020, 728: 138439.
[9]KANG S, KHAN A L, WAQAS M, et al. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus[J]. Journal of Plant Interactions, 2014, 9(1): 673-682.
[10]YUAN J, ZHAO J, WEN T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Biomed Central, 2018, 6(1): 156.
[11]BAL H, NAYAK L,DAS S, et al. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress[J]. Plant Soil,2013, 366: 93-105.
[12]KIM Y C, LEVEAU J, MCSPADDEN GARDENER B B, et al. The multifactorial basis for plant health promotion by plant-associated bacteria[J]. Applied and Environmental Microbiology, 2011, 77(5): 1548-1555.
[13]KASIM W A, GAAFAR R M, ABOU-ALI R M, et al. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley[J]. Annals of Agricultural Sciences, 2016,61(2):217-227.
[14]杨潇湘,张蕾,黄小琴,等. 基于高通量测序分析大豆和油菜根际微生物群落结构的差异[J]. 应用生态学报, 2019, 30(7): 2345-2351.
[15]刘振香,刘鹏,贾绪存,等. 不同水肥处理对夏玉米田土壤微生物特性的影响[J]. 应用生态学报, 2015, 26(1): 113-121.
[16]姜莉莉,宫庆涛,武海斌,等. 不同生草处理对苹果园土壤微生物群落的影响[J]. 应用生态学报, 2019, 30(10): 3482-3490.
[17]艾铄,张丽杰,肖芃颖,等. 高通量测序技术在环境微生物领域的应用与进展[J]. 重庆理工大学学报(自然科学), 2018, 32(9): 111-121.
[18]王林,李冰,朱健. 高通量测序技术在人工湿地微生物多样性研究中的研究进展[J]. 中国农学通报, 2016, 32(5): 10-15.
[19]牛世全,龙洋,李海云,等. 应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017, 44(9): 2067-2078.
[20]尹原森,马国胜,曹春燕,等. 不同地区凤丹根际土壤微生物功能多样性分析[J]. 分子植物育种, 2021, 19(20):6918-6926.
[21]郭丽丽,尹伟伦,郭大龙,等. 油用凤丹牡丹不同种植时间根际细菌群落多样性变化[J]. 林业科学, 2017, 53(11): 131-141.
[22]李昱莹,刘曙光,廉小芳,等. 油用牡丹凤丹不同种植年限根际真菌群落多样性变化研究[J]. 基因组学与应用生物学, 2020, 39(4): 1672-1685.
[23]全国花卉标准化技术委员会. 油用牡丹栽培技术规程: LY/T 2958-2018[S]. 北京: 国家林业局,2018.
[24]章家恩,高爱霞,徐华勤,等. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报, 2009, 20(7): 1597-1602.
[25]王悦,杨贝贝,王浩,等. 不同种植模式下丹参根际土壤微生物群落结构变化[J]. 生态学报, 2019, 39(13): 4832-4843.
[26]王丽霞,井涛,殷晓敏,等. 不同种植模式对香蕉根区土壤养分及可培养微生物数量的影响[J]. 中国南方果树, 2020, 49(4): 80-86.
[27]陈泽斌,陈敏,阮亚男,等. 不同种植模式草莓根际细菌和真菌群落结构的变化[J]. 昆明学院学报, 2019, 41(6): 52-56.
[28]李娟. 油用牡丹与经济林木立体栽培模式研究[D]. 郑州: 郑州大学, 2019.
[29]王国霞,罗青,杨玉珍,等. 立体栽培模式对油用牡丹生长和产量的影响[J]. 贵州农业科学, 2018, 46(12): 100-103.
[30]鲜文东,张潇橦,李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020,60(9):1801-1820.
[31]刘芯竹. 覆盖经营对毛竹林土壤理化性质和细菌群落多样性影响[D]. 杭州:浙江农林大学, 2021.
[32]张永敢,赵娟,张玉洁,等. 药用植物凤丹(Paeonia suffruticosa)根际土壤细菌群落16S rRNA基因的ARDRA分析[J]. 生态学报, 2016, 36(17): 5564-5574.
[33]南丽丽,郭全恩,谭杰辉,等. 轮作休耕模式对土壤细菌群落的影响[J]. 干旱地区农业研究, 2020, 38(6): 128-134.
[34]李倩,袁玲,杨水平,等. 连作对黄花蒿生长及土壤细菌群落结构的影响[J]. 中国中药杂志, 2016, 41(10): 1803-1810.
[35]杨安娜,陆云峰,张俊红,等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1): 119-127.
[36]刘婷,肖仲久,李小霞,等. 高通量测序技术分析茅台酿酒高粱根际真菌群落特征[J]. 内蒙古农业大学学报(自然科学版), 2021,43(1): 48-52.
[37]马继琼,孙一丁,杨奕,等.不同叶稻瘟抗性水稻品种对根际真菌的影响[J]. 江苏农业科学,2021,49(12):75-80.
[38]刘震,徐玉鹏,王秀领,等.黑龙港苜蓿根际土壤真菌群落结构及多样性分析[J]. 江苏农业科学,2021,49(10):197-201.
[39]薛晓敏,王来平,韩雪平,等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021,41(4): 1528-1536.
[40]王丽娟,王威威,吕雪,等. 鹿蹄草内生真菌的分离鉴定及其对鹿蹄草的生理效应[J]. 东北农业大学学报, 2013, 44(8): 87-93.
[41]MICHAL J J, ANATOLI L, ALEXANDRA F, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses which restrict Alternaria brassicae-induced disease development in roots.[J]. Molecular Plant-microbe Interactions, MPMI, 2018, 32(3): 351-363.
[42]张向民. 镰刀菌属分类学研究历史与现状[J]. 菌物研究, 2005(2): 63-66.
[43]唐涛,王帆帆,郭杰,等. 12种生物源杀菌剂对白术根腐病的防效[J]. 植物保护, 2021, 47(3): 288-293.
[44]耿贵,杨瑞瑞,於丽华,等. 作物连作障碍研究进展[J]. 中国农学通报, 2019, 35(10): 36-42.
[45]杨睿. 贵州喀斯特山区花椒林根际土壤微生物群落结构及功能研究[D]. 贵州:贵州师范大学, 2021.
[46]杨睿,李娟,龙健,等. 贵州喀斯特山区不同种植年限花椒根际土壤细菌群落结构特征研究[J]. 生态环境学报, 2021, 30(1): 81-91.
[47]赵鹏宇,白雪,燕平梅,等. 华北落叶松林土壤细菌群落结构与表型的环境异质性响应[J]. 林业科学, 2021, 57(7): 101-110.

相似文献/References:

[1]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(02):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[2]王梦姣.陕南水稻根际细菌多样性变化趋势[J].江苏农业学报,2018,(03):552.[doi:doi:10.3969/j.issn.1000-4440.2018.03.011]
 WANG Meng-jiao.Variation tendency of bacterial diversity in rice rhizosphere soil in southern Shaanxi[J].,2018,(02):552.[doi:doi:10.3969/j.issn.1000-4440.2018.03.011]
[3]孙静,陈明,孟家松,等.一个凤丹PoFAD2基因家族新成员PoFAD2-2的克隆及表达模式分析[J].江苏农业学报,2018,(06):1339.[doi:doi:10.3969/j.issn.1000-4440.2018.06.020]
 SUN Jing,CHEN Ming,MENG Jia-song,et al.Cloning and bioinformatics analysis of a new PoFAD2 family member PoFAD2-2 from Paeonia ostii T. Hong & J. X. Zhang[J].,2018,(02):1339.[doi:doi:10.3969/j.issn.1000-4440.2018.06.020]
[4]朱丽,王庆莲,唐山远,等.不同试剂处理对草莓植株生长及根际微生物群落结构的影响[J].江苏农业学报,2023,(01):198.[doi:doi:10.3969/j.issn.1000-4440.2023.01.023]
 ZHU Li,WANG Qing-lian,TANG Shan-yuan,et al.Effects of different reagent treatments on strawberry plant growth and rhizosphere microbial community structure[J].,2023,(02):198.[doi:doi:10.3969/j.issn.1000-4440.2023.01.023]
[5]石琨,袁洁,叶佳敏,等.丛枝菌根真菌在甘薯生产中的应用研究进展[J].江苏农业学报,2023,(02):576.[doi:doi:10.3969/j.issn.1000-4440.2023.02.032]
 SHI Kun,YUAN Jie,YE Jia-min,et al.Advances in application of arbuscular mycorrhizal fungi on sweet potato production[J].,2023,(02):576.[doi:doi:10.3969/j.issn.1000-4440.2023.02.032]
[6]马澜,邱黛玉,巫蓉,等.栽培模式对党参根际土壤微生物功能多样性的影响[J].江苏农业学报,2023,(05):1132.[doi:doi:10.3969/j.issn.1000-4440.2023.05.005]
 MA Lan,QIU Dai-yu,WU Rong,et al.Effects of cultivation modes on microbial functional diversity in the rhizosphere soil of Codonopsis pilosula[J].,2023,(02):1132.[doi:doi:10.3969/j.issn.1000-4440.2023.05.005]

备注/Memo

备注/Memo:
收稿日期:2021-12-16基金项目:江苏省农业科技自主创新基金项目[CX(19)3066] ;江苏现代农业产业技术体系建设项目[JATS(2021)507]作者简介:刘智(1996-),男,陕西汉中人,硕士研究生,主要从事油用牡丹根际微生物研究。(E-mail)liuzhi2021702@163.com通讯作者:王仲伟,(E-mail)w0414115@Sina.cn;汤诗杰,(E-mail)tangshijie69@aliyun.com
更新日期/Last Update: 2022-05-07