[1]石琨,袁洁,叶佳敏,等.丛枝菌根真菌在甘薯生产中的应用研究进展[J].江苏农业学报,2023,(02):576-581.[doi:doi:10.3969/j.issn.1000-4440.2023.02.032]
 SHI Kun,YUAN Jie,YE Jia-min,et al.Advances in application of arbuscular mycorrhizal fungi on sweet potato production[J].,2023,(02):576-581.[doi:doi:10.3969/j.issn.1000-4440.2023.02.032]
点击复制

丛枝菌根真菌在甘薯生产中的应用研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
576-581
栏目:
综述
出版日期:
2023-04-30

文章信息/Info

Title:
Advances in application of arbuscular mycorrhizal fungi on sweet potato production
作者:
石琨12袁洁2叶佳敏23汪吉东2朱国鹏1王磊2张辉2张永春23
(1.海南大学园艺学院,海南海口570228;2.江苏省农业科学院农业资源与环境研究所/国家农业环境六合观测实验站,江苏南京210014;3.南京农业大学资源与环境科学学院,江苏南京210095)
Author(s):
SHI Kun12YUAN Jie2YE Jia-min23WANG Ji-dong2ZHU Guo-peng1WANG Lei2ZHANG Hui2ZHANG Yong-chun23
(1.School of Horticulture, Hainan University, Haikou 570228, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Nanjing 210014, China;3.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
甘薯丛枝菌根真菌根际微生物有机碳
Keywords:
sweet potatoarbuscular mycorrhizal fungirhizosphere microorganismsorganic carbon
分类号:
S154.39
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.032
文献标志码:
A
摘要:
甘薯(Ipomoea batatas L.)是一种适应性强、高产、多用途的粮食作物。丛枝菌根真菌(AMF)是一种广泛分布的能与宿主建立互惠共生关系的真菌。AMF能够定殖于甘薯根系,其菌丝的延伸不仅扩大了根系吸收养分的范围,还促进了根系分泌有机碳等物质,起到改善宿主根际环境、活化土壤养分的作用。接种AMF能促进甘薯对养分的吸收利用,调控块根的形成和膨大。本文围绕甘薯与AMF的共生效应,综述AMF与甘薯共生关系的建立、AMF与甘薯共生效应的影响因素、AMF促进甘薯生长发育的作用机制。最后,分析了目前甘薯与AMF共生效应研究中的局限,并针对存在问题进行探讨和展望,为甘薯等作物可持续高效生产提供理论基础和应用依据。
Abstract:
Sweet potato (Ipomoea batatas L.) is an adaptable, high-yield and multi-purpose food crop. Arbuscular mycorrhiza fungi (AMF) are widely distributed fungi that can establish a symbiotic relationship with their hosts. AMF can colonize sweet potato roots. The extension of AMF mycelium not only expands the range of nutrient absorption by roots, but also promotes the secretion of organic carbon and other substances by roots, which plays a role in improving the host rhizosphere environment and activating soil nutrients. AMF inoculation can promote the absorption and utilization of nutrients in sweet potato, and regulate the formation and expansion of root tubers. In this paper, the establishment of symbiotic relationship between AMF and sweet potato, the influencing factors of symbiotic effect between AMF and sweet potato, and the mechanism of AMF promoting the growth and development of sweet potato were reviewed. Finally, the limitations of the current research on the symbiotic effect of sweet potato and AMF were analyzed, and the existing problems were discussed and prospected. This study provides theoretical basis and application basis for the sustainable and efficient production of sweet potato and other crops.

参考文献/References:

[1]黄艳飞,吴庆丽,万群,等. 丛枝菌根真菌的研究进展[J]. 现代农业, 2019(12): 9-12.
[2]陆建珍,汪翔,秦建军,等. 我国甘薯种植业时空布局分析及产业发展建议[J]. 天津农业科学, 2020, 26(3): 53-62.
[3]弋凤蕊,刘瑞涵,李仁崑. 中国甘薯产业竞争力区域比较研究[J]. 农业展望, 2021, 17(7): 61-66.
[4]徐西红,李腾腾,李欢. 接种AM真菌对甘薯光合作用及碳磷代谢酶活性的影响[J]. 水土保持学报, 2016, 30(2): 255-259.
[5]周晓月,袁洁,石琨,等. AMF对甘薯生物量、根系形态及钾素吸收的影响[J]. 江苏农业学报, 2022, 38(4): 939-948.
[6]张树海,李欢,刘庆,等. 接种根内球囊霉提高氮素向甘薯块根转移和再分配的机理[J]. 植物营养与肥料学报, 2019, 25(9): 1542-1549.
[7]盖京苹,冯固,李晓林. 接种丛枝菌根真菌对甘薯生长的影响研究[J]. 中国生态农业学报, 2004, 12(1): 111-113.
[8]李欢,杜志勇,刘庆,等. 蚯蚓菌根互作对土壤酶活、甘薯根系生长及养分吸收的影响[J]. 植物营养与肥料学报, 2016, 22(1): 209-215.
[9]KEEFE D M, SYLVIA D M. Chronology and mechanisms of P uptake by mycorrhizal sweet potato plants[J]. New Phytologist, 1992, 122(4): 651-659.
[10]KEEFE D M, SYLVIA D M. Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi[J]. Mycorrhiza, 1993, 3(3): 115-122.
[11]HARLEY J L. The significance of mycorrhiza[J]. Mycological Research, 1989, 92(2): 129-139.
[12]李艳红,李艳凤. 丛枝菌根与土壤碳截获的研究进展[J]. 安徽农业科学, 2019, 47(12): 6-9.
[13]WIPF D, KRAJINSKI F, TUINEN D, et al. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks[J]. New Phytologist, 2019, 223(3): 1127-1142.
[14]储薇,郭信来,张晨,等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报(中英文), 2022, 30(11): 1709-1721.
[15]ALHADIDI N, PAP Z, LADNYI M, et al. Mycorrhizal inoculation effect on sweet potato (Ipomoea batatas (L.) Lam) seedlings[J]. Agronomy, 2021, 11(10): 2019.
[16]YUAN J, SHI K, ZHOU X Y, et al. Interactive impact of potassium and arbuscular mycorrhizal fungi on the root morphology and nutrient uptake of sweet potato (Ipomoea batatas L.) [J]. Frontiers in Microbiology, 2023, 13:1075957.
[17]MARSCHNER H, DELL B. Nutrient uptake in mycorrhizal symbiosis[J]. Plant and Soil, 1994, 159(1): 89-102.
[18]王幼珊,刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
[19]彭生斌,沈崇尧,裘维蕃. 中国的内囊霉科菌根真菌[J]. 真菌学报, 1990,9(3): 170-175.
[20]盖京苹,冯固,李晓林. 我国北方农田土壤中AM真菌的多样性[J]. 生物多样性, 2004,12(4): 435-440.
[21]BORIS B, RENKER C, KAHMEN A, et al. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity[J]. Biology and Fertility of Soils, 2006, 42(4): 286-298.
[22]FARMER M J, LI X, FENG G, et al. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China[J]. Applied Soil Ecology, 2006, 35(3): 599-609.
[23]张美庆,王幼珊. 我国北部的七种VA菌根真菌[J]. 真菌学报, 1991,10(1): 13-21.
[24]张美庆,王幼珊,黄磊. 我国北部的八种VA菌根真菌[J]. 真菌学报, 1992,11(4): 258-267.
[25]刘文科,冯固,李晓林. AM真菌接种对甘薯产量和品质的影响[J]. 中国生态农业学报, 2006,14(4): 106-108.
[26]YOOYONGWECH S, SAMPHUMPHUANG T, TISARUM R, et al. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline[J]. Scientia Horticulturae, 2016, 198(1): 107-117.
[27]曹本福,姜海霞,陆引罡,等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料, 2021(1): 327-338.
[28]孔维宝,陈冬,杨树玲,等. 油橄榄与丛枝菌根真菌的共生效应研究进展[J]. 应用与环境生物学报, 2019, 25(3): 750-758.
[29]DING Y, JIN Y, HE K, et al. Low nitrogen fertilization alter rhizosphere microorganism community and improve sweet potato yield in a nitrogen-deficient rocky soil[J]. Frontiers in Microbiology, 2020, 11(1): 678.
[30]COSME M, RAMIREDDY E, FRANKEN P, et al. Shoot-and root-borne cytokinin influences arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2016, 26(7): 709-720.
[31]刘倩. 施钾对甘薯产量品质及营养元素吸收的影响[D]. 泰安:山东农业大学, 2014.
[32]MUKHONGO R W, TUMUHAIRWE J B, PETER E, et al. Combined application of biofertilizers and inorganic nutrients improves sweet potato yields[J]. Frontiers in Plant Science, 2017, 8(1): 219.
[33]ARLE I, SDERSTRM B, OLSSON P A. Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats[J]. Soil Biology and Biochemistry, 2003, 35(12): 1557-1564.
[34]王幼珊,刘相梅,张美庆,等. 盆栽基质及营养液对AM真菌接种剂繁殖的影响[J]. 华北农学报, 2001, 16(4): 81-86.
[35]高雪冬. 菌根化育苗对田间不施磷玉米生长和养分吸收的影响[J]. 现代农业科技, 2021(5): 18-19.
[36]涂德辉,张芳,毛明明,等. 丛枝菌根真菌对桑树根系氮积累及水通道蛋白表达的影响[J]. 植物生理学报, 2022, 58(8): 1607-1616.
[37]王雪霏,曹哲,杨钥,等. 北方黑土地花生根际丛枝菌根菌(AMF)分离鉴定及应用[J]. 高师理科学刊, 2022, 42(8): 71-76.
[38]NO R, KIERS E T. Mycorrhizal markets, firms, and coops[J]. Trends in Ecology & Evolution, 2018, 33(10): 777-789.
[39]郭良栋,田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1): 158-171.
[40]TRESEDER K K, TURNER K M. Glomalin in ecosystems[J]. Soil Science Society of America Journal, 2007, 71(4): 1257-1266.
[41]RILLIG M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(44): 355-363.
[42]PARIHAR M, RAKSHIT A, MEENA V S, et al. The potential of arbuscular mycorrhizal fungi in C cycling: a review[J]. Archives of Microbiology, 2020, 202(7): 1581-1596.
[43]SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil & Tillage Research, 2004, 79(1): 7-31.
[44]ROSIER C L, HOYE A T, RILLIG M C. Glomalin-related soil protein: assessment of current detection and quantification tools[J]. Soil Biology and Biochemistry, 2006, 38(8): 2205-2211.
[45]HERMAN D J, FIRESTONE M K, NUCCIO E, et al. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition[J]. FEMS Microbiology Ecology, 2012, 80(1): 236-247.
[46]PATERSON E, SIM A, DAVIDSON J, et al. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation[J]. Plant and Soil, 2016, 408(1/2): 243-254.
[47]TALBOT J M, ALLISON S D, TRESEDER K K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22(6): 955-963.
[48]KUZYAKOV Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology & Biochemistry, 2006, 38(3): 425-448.
[49]FENG H, ZHANG N, DU W, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant-Microbe Interactions, 2018, 31(10): 995-1005.
[50]ZHANG N, YANG D, WANG D, et al. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates[J]. BMC Genomics, 2015, 16(1): 685.
[51]CHAPARRO J M, BADRI D V, BAKKER M G, et al. Correction: root exudation of phytochemicals in arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. PLoS One, 2013, 8(2): e55731.
[52]CARAVACA F, FIGUEROA D, BAREA J M, et al. Effect of mycorrhizal inoculation on the nutrient content, gas exchange and nitrate reductase activity of Retama sphaerocarpa and Olea europaea SBSP. Sylvestris under drought stress[J]. Journal of Plant Nutrition, 2004, 27(1): 57-74.
[53]BAGO B, ZIPFEL W, WILLIAMS R M, et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 2002, 128(1): 108-124.
[54]GAO X, HOFFLAND E, STOMPH T, et al. Improving zinc bioavailability in transition from flooded to aerobic rice. A review[J]. Agronomy for Sustainable Development, 2012, 32(2): 465-478.
[55]竹嘉妮,黄弘,杜勇,等. 丛枝菌根真菌影响宿主植物蒺藜苜蓿根系酸性磷酸酶活性的跨世代效应[J]. 生态学杂志, 2022, 41(5): 912-918.
[56]GONG M, TANG M, CHEN H, et al. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress[J]. New Forests, 2013, 44(3): 399-408.
[57]PORCEL R, REDONDO-GMEZ S, MATEOS-NARANJO E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. Journal of Plant Physiology, 2015, 185(1): 75-83.
[58]宁运旺,马洪波,张辉,等. 氮、磷、钾对甘薯生长前期根系形态和植株内源激素含量的影响[J]. 江苏农业学报, 2013, 29(6): 1326-1332.
[59]梁清干,陈艳丽,刘永华,等. 磷素对甘薯生长前期源库关系建立和平衡的影响[J]. 热带作物学报, 2021, 42(10): 2915-2923.
[60]宁运旺,马洪波,张辉,等. 甘薯源库关系建立、发展和平衡对氮肥用量的响应[J]. 作物学报, 2015, 41(3): 432-439.
[61]LIU J J, LIU J L, LIU J H, et al. The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake[J]. Plant Physiology, 2019, 180(1): 465-479.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(02):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(02):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(02):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(02):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(02):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]罗璇,黄国辉,姚平,等.外源丛枝菌根真菌对低温胁迫下蓝莓幼苗抗氧化系统的影响[J].江苏农业学报,2017,(04):909.[doi:doi:10.3969/j.issn.1000-4440.2017.04.028]
 LUO Xuan,HUANG Guo-hui,YAO Ping,et al.Influence of arbuscular mycorrhizal fungi on antioxidant systems in the in vitro branch of blueberry under low temperature stress[J].,2017,(02):909.[doi:doi:10.3969/j.issn.1000-4440.2017.04.028]
[10]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(02):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[11]周晓月,袁洁,石琨,等.丛枝菌根真菌对甘薯生物量、根系形态及钾素吸收的影响[J].江苏农业学报,2022,38(04):939.[doi:doi:10.3969/j.issn.1000-4440.2022.04.010]
 ZHOU Xiao-yue,YUAN Jie,SHI Kun,et al.Effects of arbuscular mycorrhizal fungi on biomass, root morphology and potassium uptake of sweet potato[J].,2022,38(02):939.[doi:doi:10.3969/j.issn.1000-4440.2022.04.010]

备注/Memo

备注/Memo:
收稿日期:2022-11-15 基金项目:国家甘薯产业技术体系项目(CARS-10);江苏省农业科技自主创新基金项目[CX(21)1009] 作者简介:石琨(1997-),女,河北廊坊人,硕士研究生,主要从事植物生长和养分吸收研究。(E-mail)915399405@qq.com 通讯作者:汪吉东,(E-mail)jdwang66@163.com;朱国鹏,(E-mail)guopengzhu@163.com
更新日期/Last Update: 2023-05-12