[1]杨丹青,何晓丽,李佳,等.外源镍与氮素互作对番茄幼苗生长及光合特性的影响[J].江苏农业学报,2021,(04):936-943.[doi:doi:10.3969/j.issn.1000-4440.2021.04.016]
 YANG Dan-qing,HE Xiao-li,LI Jia,et al.Effects of interaction between exogenous nickel and nitrogen on growth and photosynthetic characteristics of tomato seedlings[J].,2021,(04):936-943.[doi:doi:10.3969/j.issn.1000-4440.2021.04.016]
点击复制

外源镍与氮素互作对番茄幼苗生长及光合特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
936-943
栏目:
园艺
出版日期:
2021-08-28

文章信息/Info

Title:
Effects of interaction between exogenous nickel and nitrogen on growth and photosynthetic characteristics of tomato seedlings
作者:
杨丹青何晓丽李佳厉书豪杜志杰张昆钟凤林
(福建农林大学园艺学院,福建福州350000)
Author(s):
YANG Dan-qingHE Xiao-liLI JiaLI Shu-haoDU Zhi-jieZHANG KunZHONG Feng-lin
(College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350000, China)
关键词:
番茄氮素生长光合特性
Keywords:
tomatonickelnitrogengrowthphotosynthetic characteristics
分类号:
S641.2
DOI:
doi:10.3969/j.issn.1000-4440.2021.04.016
文献标志码:
A
摘要:
本研究以Micro Tom番茄(Solanum lycopersicum L.)为试验材料,设3个外源镍(Ni2+)质量浓度:0 mg/L、0.1 mg/L和1.0 mg/L,2个施氮量:112.0 mg/L、22.4 mg/L,研究外源镍与氮素互作对番茄幼苗生长和光合特性的影响。结果表明,外源施加适量Ni2+(0.1 mg/L)可以增加低氮条件下番茄幼苗叶面积和叶绿素含量,提高番茄叶片的净光合速率和光合活性,促进番茄幼苗生长和干物质的积累从而缓解低氮对番茄幼苗造成的不利影响,使番茄幼苗维持在一个较好的生长状态。
Abstract:
In this study, Micro Tom tomato (Solanum lycopersicum L.) was used as the test material, and three exogenous nickel (Ni2+) concentrations (0 mg/L, 0.1 mg/L, 1.0 mg/L) and two nitrogen application rates (112.0 mg/L, 22.4 mg/L) were set to explore the effects of interaction between exogenous nickel and nitrogen on growth and photosynthetic characteristics of tomato seedlings. The results showed that external application of appropriate amount of Ni2+ (0.1mg/L) could increase the leaf area and chlorophyll content of tomato seedlings under low nitrogen conditions, increase the net photosynthetic rate and photosynthetic activity of tomato leaves, promote the growth of tomato seedlings and the accumulation of dry matter, alleviate the adverse effects of low nitrogen on the tomato seedlings, and maintain the tomato seedlings, in a better growth state.

参考文献/References:

[1]潘铜华. CO2富集与光强互作对番茄光合碳同化的影响及代谢组研究[D]. 杨凌:西北农林科技大学,2019.
[2]李娟,李建设,高艳明. 不同生育期营养液钾氮比对日光温室基质培番茄的影响[J]. 北方园艺,2016,40(17):51-56.
[3]梁红胜,张子义,王学霞,等. 控释氮肥与水溶肥配施对设施番茄生理特征的影响[J]. 中国土壤与肥料,2020,57(5):70-76.
[4]马正波,董学瑞,房孟颖,等. 矮壮素配合氮肥全基施对华北夏玉米氮素利用的调控效应[J]. 应用生态学报,2021,32(1): 1-14.
[5]蒋伟勤,马中涛,胡群,等. 缓控释氮肥对水稻生长发育及氮素利用的影响[J]. 江苏农业学报,2020,36(3):777-784.
[6]LIU Q, CHEN XB, WU K, et al. Nitrogen signaling and use efficiency in plants: what’s new?[J]. Current Opinion in Plant Biology, 2015,27(10): 192-198.
[7]袁丹. 不同施氮水平对不同甘蔗品种叶绿体结构和GS表达的影响[D].南宁: 广西大学,2017.
[8]MARSCHNER H. Mineral nutrition of higher plants[M]. 北京:科学出版社,2013.
[9]ESKEW D L, WELCH R M, CARY E E. Nickel: an essential micronutrient for legumes and possibly all higher plants[J]. Science,1983,222(4642):621-623.
[10]KHOSHGOFTARMANESH A H, HOSSEINI F, AFYUNI M. Nickel supplementation effect on the growth, urease activity and urea and nitrate concentrations in lettuce supplied with different nitrogen sources[J]. Scientia Horticulturae, 2011, 130(2): 381-385.
[11]XUE W T, IKEDA H, ODA M. Effects of nickel concentration in the nutrient solution on the nitrogen assimilation and growth of tomato seedlings in hydroponic culture supplied with urea or nitrate as the sole nitrogen source[J]. Scientia Horticulturae, 2000, 84(3/4): 265-273.
[12]DALIR N, KHOSHGOFTARMANESH A H. Root uptake and translocation of nickel in wheat as affected by histidine[J]. Journal of Plant Physiology, 2015, 184: 8-14.
[13]PARLAK U, KADIRIYE. Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings[J]. Njas-Wageningen Journal of Life Sciences, 2016, 76: 1-5.
[14]DOUGLAS S F, BRUNA W R, ANDR R D R, et al. Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes[J]. Frontiers in Plant Science, 2018, 9: 614.
[15]王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006.
[16]DIXON N E, GAZZOLA C, BLAKELEY R L, et al. Jack bean urease (EC 3.5.1.5). a metalloenzyme. a simple biological role for nickel[J]. Journal of the American Chemical Society, 1975, 97(14): 4131-4133.
[17]EVANS H J, HARKER A R, PAPEN H, et al. Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia[J]. Annual Review of Microbiology, 1987, 41(1): 335.
[18]刘明月,严逸男,尚春雨,等. 镍离子对尖叶莴苣氮素吸收和生长生理的影响[J]. 西北植物学报,2018,38(11): 2060-2071.
[19]HOSSEINI H, KHOSHGOFTARMANESH A H. The effect of foliar application of nickel in the mineral form and urea-Ni complex on fresh weight and nitrogen metabolism of lettuce[J]. Scientia Horticulturae, 2013, 164: 178-182.
[20]TABATABAEI S J. Supplements of nickel affect yield, quality, and nitrogen metabolism when urea or nitrate is the sole nitrogen source for cucumber[J]. Journal of Plant Nutrition, 2009, 32(5): 713-724.
[21]李静,王洪章,刘鹏,等. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报,2021,71(1): 1-11.
[22]郭雯,徐瑞晶,漆良华,等. 竹类植物光合特性与叶片功能性状研究[J]. 世界林业研究,2018,31(4): 29-35.
[23]MONNEVEUX P, ZAIDI P H, SANCHEZ C. Population density and low nitrogen affects yield-associated traits in tropical maize[J]. Crop Science, 2005, 45(2): 535-545.
[24]王红娟,於春,路献勇,等. 不同氮浓度对薏苡幼苗生长和光合特性的影响[J]. 南方农业学报, 2020, 51(8): 1925-1931.
[25]GHEIBI M N, MALAKOUTI M J, KHOLDEBARIN B, et al. Significance of nickel supply for growth and chlorophyll content of wheat supplied with urea or ammonium nitrate[J]. Journal of Plant Nutrition, 2009, 32(9): 1440-1450.
[26]马宗桓,毛娟,魏居灿,等. 施氮时期对葡萄叶片光合生理及内源激素水平的影响[J]. 干旱地区农业研究,2020, 38(5): 86-93.
[27]金星宇,马佳,冯美.盐胁迫对酸柚苗光合作用和荧光特性的影响[J].江苏农业科学,2020,48(8):159-163.
[28]李君,娄运生,马莉,等. 夜间增温和水分管理耦合对水稻叶片光合作用和荧光特性的影响[J].江苏农业学报, 2019,35(3):506-513.
[29]曾继娟,种培芳,朱强. 外源脱落酸对荒漠植物红砂幼苗光合及叶绿素荧光特性的影响[J].江苏农业科学,2020,48(7):136-141.
[30]白文玉. 不同种源四川桤木嫁接幼苗光合及叶绿素荧光特征研究[D]. 雅安:四川农业大学, 2019.
[31]张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报,1999,17(4): 444-448.
[32]白文玉,铁烈华,冯茂松,等. 不同种源桤木嫁接幼苗光合和叶绿素荧光特征[J]. 四川农业大学学报, 2020, 38(6): 670-676.
[33]钱永强,周晓星,韩蕾,等. Cd2+胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响[J]. 生态学报,2011,31(20): 6134-6142.

相似文献/References:

[1]赵丽萍,李永灿,赵统敏,等.灰霉菌毒素诱导番茄抗性突变体及相关防御酶活性[J].江苏农业学报,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
 ZHAO Li-ping,LI Yong-can,ZHAO Tong-min,et al.Resistant mutant induced by toxin of Botrytis cinerea in tomato and the activities of related defensive enzymes[J].,2016,(04):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
[2]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
 LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[3]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(04):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[4]姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
 JIANG Jing,WANG Yin-lei,ZHAO Li-ping,et al.Selection of tomato reference genes for qRT-PCR[J].,2017,(04):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
[5]罗伟君,唐琳,周佳丽,等.纳米锌肥对番茄果实锌含量与品质的强化[J].江苏农业学报,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
 LUO Wei-jun,TANG Lin,ZHOU Jia-li,et al.Improvement of zinc concentration and quality of tomato fruit by nano zinc fertilizer[J].,2016,(04):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
[6]乔俊卿,陈志谊,梁雪杰,等.枯草芽孢杆菌Bs916在番茄根部的定殖[J].江苏农业学报,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
 QIAO Jun-qing,CHEN Zhi-yi,LIANG Xue-jie,et al.Colonization of Bacillus subtilis Bs916 on tomato root[J].,2015,(04):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
[7]翟亚明,魏丽萍,杨倩.不同调控方式对设施盐渍化土壤特性和番茄产量及品质的影响[J].江苏农业学报,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
 ZHAI Ya-ming,WEI Li-ping,YANG Qian.Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality[J].,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
[8]杨玛丽,赵统敏,余文贵,等.转基因 RNAi 技术在番茄研究中的应用[J].江苏农业学报,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
 YANG Ma-li,ZHAO Tong-min,YU Wen-gui,et al.Progress in RNA interference technique applied in tomato[J].,2015,(04):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
[9]唐玉新,曲萍,陆岱鹏,等.适合机械化移栽的番茄穴盘育苗基质配方筛选[J].江苏农业学报,2017,(06):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
 TANG Yu-xin,QU Ping,LU Dai-peng,et al.Screening of tomato plug seedling substrates proportion suitable for mechanized transplanting[J].,2017,(04):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
[10]姜静,王银磊,李亚茹,等.江苏省及其他地区番茄黄化曲叶病毒的分子鉴定及序列分析[J].江苏农业学报,2018,(01):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]
 JIANG Jing,WANG Yin-lei,LI Ya-ru,et al.Molecular identification and sequence analysis of tomato yellow leaf curl virus in Jiangsu province and its peripheral area[J].,2018,(04):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]

备注/Memo

备注/Memo:
收稿日期:2021-01-10基金项目:福建省蔬菜产业技术体系岗位专家项目(KKE19004A);南方特色设施番茄良种高产技术产业化示范项目(102-K6017201A)作者简介:杨丹青(1996-),女,山东淄博人,硕士研究生,主要从事蔬菜生理生化研究。(E-mail)ydqonh@163.com通讯作者:钟凤林,(E-mail)zhong591@fafu.edu.cn
更新日期/Last Update: 2021-09-06