[1]周玲,张体付,梁帅强,等.利用三重测交群体解析玉米穗部性状杂种优势遗传学基础[J].江苏农业学报,2017,(05):986-992.[doi:doi:10.3969/j.issn.1000-4440.2017.05.005]
 ZHOU Ling,ZHANG Ti-fu,LIANG Shuai-qiang,et al.Deciphering the genetic basis of heterosis for ear traits using the triple testcross population in maize[J].,2017,(05):986-992.[doi:doi:10.3969/j.issn.1000-4440.2017.05.005]
点击复制

利用三重测交群体解析玉米穗部性状杂种优势遗传学基础()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年05期
页码:
986-992
栏目:
遗传育种·生理生化
出版日期:
2017-10-30

文章信息/Info

Title:
Deciphering the genetic basis of heterosis for ear traits using the triple testcross population in maize
作者:
周玲张体付梁帅强陆海燕吕远大
(江苏省农业科学院种质资源与生物技术研究所/江苏省农业生物学重点实验室,江苏南京210014)
Author(s):
ZHOU LingZHANG Ti-fuLIANG Shuai-qiangLU Hai-yanLYU Yuan-da
(Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/Provincial Key Laboratory of Agrobiology, Nanjing 210014, China)
关键词:
玉米穗部性状杂种优势三重测交群体数量性状位点(QTL)
Keywords:
maizeear traitheterosistriple testcross populationquantitative trait locus(QTL)
分类号:
S513.035.1
DOI:
doi:10.3969/j.issn.1000-4440.2017.05.005
文献标志码:
A
摘要:
玉米穗部性状与产量密切相关,剖析控制穗部性状杂种优势数量性状位点(QTL)有助于加深杂种优势作用机制的理解,为杂种优势的应用提供理论指导。本研究根据三重测交交配设计方法组配了121个测交后代的三重测交(TTC)群体,并利用完备区间作图法(ICIM)对穗部性状杂种优势进行了QTL分析。经检测,共发现13个主效QTLs。其中,穗长检测到2个QTL,穗粗检测到4个QTL,穗行数检测到1个QTL,行粒数检测到2个QTL,百粒质量检测到4个QTL。这些QTL分别分布于第1、第2、第3、第4、第5和第10染色体上。QTL位点作用模式分析结果表明,超显性位点最多(10个),加性位点最少(2个),单位点可解释 8.2%~233%的表型变异。对QTL位点上位性互作进一步剖分发现,穗粗、穗行数和百粒质量性状中存在9对不同位点的上位性互作,单位点可解释 20.4%~353%的表型变异。研究结果表明,加性、显性及两位点上位性互作是玉米穗部性状杂种优势形成的主要遗传学基础。
Abstract:
Ear traits are closely correlated with the yield in maize. The understanding of the genetic basis of heterosis for ear traits could facilitate maize breeding program. In this study, the triple testcross(TTC) populations consisting of 121 testcross progenies were constructed based on the TTC genetic mating design. In total, thirteen different QTLs for five ear traits were mapped on chromosomes 1, 2, 3, 4, 5 and 10 using inclusive composite interval mapping (ICIM) method. Of these, 2, 4, 1, 2 and 4 QTLs were detected for ear length (EL), ear diameter (ED), rows per ear (RPE), kernels per row (KPR) and hundred kernel weight (HKW), respectively. According to the action mode of QTLs, these QTLs for five ear traits were classified as overdominant (10) and additive (2), with single locus accounting for 8.2%- 233% of the total variation. In addition, nine marker pairs with digenic epistatic effects were scaned for the ED, RPE and HKW, and the total variation explained by single digenic interaction was 20.4%-353%. These findings suggest that additive, dominant and degenic epistasis contribute to genetic basis of heterosis for maize ear traits together.

参考文献/References:

[1]DUVICK D N. The contribution of breeding to yield advances in maize (Zea mays L.) [J]. Advances in Agronomy, 2005, 86: 83-145.
[2]林峰,梁帅强,周玲,等. 玉米自交系的遗传多样性分析及杂种优势群划分[J].江苏农业科学,2015,43(11):107-109.
[3]KU L X, ZHAO W M, ZHANG J, et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2010, 121(5): 951-959.
[4]陈灿,林秀芳,陈勤平,等. 2008-2014年广西审定玉米品种种质基础及杂优模式分析[J].南方农业学报,2015,46(7):1160-1165.
[5]王敏,徐萍,刘新江,等. 黄淮海地区夏玉米农艺性状与产量的通径分析[J]. 中国生态农业学报, 2011, 19(5):1229-1236.
[6]彭勃,王阳,李永祥,等. 玉米籽粒产量与产量构成因子的关系条件及QTL分析[J]. 作物学报,2010,36(10):1624-1633.
[7]成雪峰,李建奇,张凤云. 夏玉米产量与产量性状的灰色关联分析[J]. 种子, 2007,26(12) : 60-62.
[8]BRUCE A B. The Mendelian theory of heredity and the augmentation of vigor [J]. Science, 1910, 32(827): 627-628.
[9]XIAO J, LI J, YUAN L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics, 1995, 140(2): 745-754.
[10]DING D, WANG Y, HAN M, et al. MicroRNA transcriptomic analysis of heterosis during maize seed germination[J]. PLoS One, 2012, 7(6): e39578.
[11]MARCON C, LAMKEMEYER T, MALIK W A, et al. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS [J]. Journal of Proteomics, 2013, 93: 295-302.
[12]FU Z, JIN X, DING D, et al. Proteomic analysis of heterosis during maize seed germination [J]. Proteomics, 2011, 11(8): 1462-1472.
[13]YAN J, TANG H, HUANG Y, et al. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid [J]. Euphytica, 2006, 149(1): 121-131.
[14]MA X Q, TANG J H, TENG W T, et al. Epistatic interaction is an important genetic basis of grain yield and its components in maize[J]. Molecular Breeding, 2007, 20: 41-51.
[15]KEARSEY M J, JINKS J L. A general method of detecting additive, dominance and epistatic variation for metrical traits[J]. Heredity, 1968, 23(3): 403-409.
[16]LI L, LU K, CHEN Z, et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids[J]. Genetics, 2008, 180(3): 1725-1742.
[17]张体付,梁帅强,吕远大,等. 基于三重测交群体解析玉米株高与穗位高杂种优势QTL [J].核农学报, 2017, 31(5): 837-843.
[18]KUSTERER B, MUMINOVIC J, UTZ H F, et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis [J]. Genetics, 2007, 175(4): 2009-2017.
[19]LEE M, SHAROPOVA N, BEAVIS W D, et al. Expanding the genetic map of maize with the intermated B73×Mo17 (IBM) population [J]. Plant Molecular Biology, 2002, 48: 453-461.
[20]王建康. 数量性状基因的完备区间作图方法 [J]. 作物学报, 2009, 35(2): 239-245.
[21]JIANG L, GE M, ZHAO H, et al. Analysis of Heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize [J]. PLoS One, 2015, 10(4): e0124779.
[22]MELCHINGER A E, UTZ H F, PIEPHO H, et al. The role of epistasis in the manifestation of heterosis: a systems-oriented approach [J]. Genetics, 2007, 177(3): 1815-1825.
[23]STUBER C W, EDWARDS M D, WENDEL J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. factors influencing yield and its component traits[J]. Crop Science, 1987, 27: 639-648.
[24]宋方威,彭惠茹,刘婷,等. 利用三重测交群体剖析玉米株高与穗位高杂种优势的遗传学基础 [J]. 作物学报, 2011, 37(7): 1186-1195.
[25]汤继华,严建兵,马西青,等. 利用“永久F2”群体剖析玉米产量及其相关性状的遗传机制[J]. 作物学报, 2007, 33(8):1299-1303.
[26]HUO D, NING Q, SHEN X, et al. QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize [J]. PLoS One, 2016, 11(5): e0155506.
[27]LIU L, DU Y, HUO D, et al. Genetic architecture of maize kernel row number and whole genome prediction[J]. Theoretical and Applied Genetics, 2015, 128(11): 2243-2254.
[28]YANG C, LIU J, RONG T Z. Detection of quantitative trait loci for ear row number in F2 populations of maize [J]. Genetics and Molecular Research, 2015, 14(4): 14229-14238.
[29]LI Z K, PINSON S R M, PARK W D, et al. Epistasis for three grain yield components in rice (Oryza sativa L.) [J]. Geneties, 1997, 145(2): 453-465.
[30]YU S B, LI J X, XU C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid[J]. Proceedings of the National Academy of Sciences, 1997, 94(17): 9226-9231.
[31]SCHNABLE P S, WARE D, FULTON R S, et al. The B73 maize genome: complexity, diversity, and dynamics [J]. Science, 2009, 326(5956): 1112-1115.
[32]LI R Q, LI Y R, FANG X D, et al. SNP detection for massively parallel whole-genome resequencing [J]. Genome Research, 2009, 19(6): 1124-1132.
[33]LAI J, LI R, XU X, et al. Genome-wide patterns of genetic variation among elite maize inbred lines[J]. Nature Genetics, 2010, 42(11): 1027-1030.
[34]张体付,葛敏,韦玉才,等. 玉米功能性Insertion/Deletion (InDel) 分子标记的挖掘及其在杂交种纯度鉴定中的应用 [J]. 玉米科学, 2012, 20(2): 64-68.
[35]葛敏,蒋璐,张晓林,等. 利用Insertion/Deletion (InDel) 分子标记检测玉米互交种混杂的原理及应用 [J]. 分子植物育种, 2013, 11(1): 37-47.
[36]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发 [J].江苏农业学报, 2016,32 (6): 1223-1231.
[37]周玲,梁帅强,吕远大,等.中国黄淮海地区玉米杂种优势候选位点的鉴定 [J].玉米科学, 2017, 25(1): 15-23.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(05):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(05):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(05):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(05):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(05):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(05):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(05):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(05):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2017-04-01 基金项目:国家自然科学基金项目(31671760、31601315);江苏省自然科学基金项目(BK20160582) 作者简介:周玲(1987-), 女, 安徽合肥人, 博士, 助理研究员, 研究方向为作物遗传育种。(E-mail) zlingxiaoyao@163.com。张体付为共同第一作者。
更新日期/Last Update: 2017-11-03