WU Yang-sheng,LIN Jia-peng,WANG Li-qin,et al.Transcriptome profiling of ovine follicles during growth from small to middle antral sizes[J].,2016,(04):832-842.[doi:10.3969/j.issn.100-4440.2016.04.019]





Transcriptome profiling of ovine follicles during growth from small to middle antral sizes
新疆畜牧科学院生物技术研究所,新疆 乌鲁木齐 830000
WU Yang-shengLIN Jia-pengWANG Li-qinCHEN YingHUANG Jun-cheng
Biological Technology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830000, China)
ovine small follicle middle follicle transcriptome follicle selection
卵泡的选择和发育过程涉及到卵泡内多种基因表达的变化和调控。绵羊卵泡的选择和发育过程与卵泡直径变化密切相关。以绵羊健康小卵泡(1~2 mm)和中卵泡(3~4 mm)为材料,进行RNA测序,分析小卵泡发育至中卵泡过程转录组水平变化特征。在分子功能上显著变化的基因主要涉及酶活性的调节和离子结合;在细胞组分上显著变化的基因主要涉及细胞外基质和质膜蛋白;在生物学过程上显著变化的基因主要涉及细胞增殖的正调控、细胞通讯、免疫和刺激反应等过程。KEGG分析差异基因富集的通路主要是补体和凝血级联反应,吞噬小体,细胞因子-细胞因子受体相互作用,TGF-β信号通路和轴突导向等。从小卵泡到中卵泡表达上调的有脂代谢相关基因(APOA1、APOD、APOE),胰岛素样生长因子路径基因(IGFBP1、IGFBP7),肿瘤生长因子beta途径基因(INHBA),核心蛋白多糖基因(DCN),血管发生基因(MGP),跨膜4超家族成员1基因(TM4SF1),胞外基质重建基因(MMP1、MMP13),五聚素3基因(PTX3),金属蛋白酶组织抑制剂1基因(TIMP1)。从小卵泡到中卵泡表达下调的主要有转录因子C-FOS、EGR1、FOSB和线粒体编码的脱氢酶家族基因MT-ND1、MT-ND5、MT-ND6等。这些基因的表达变化表明绵羊卵泡的选择过程可能涉及到IGF和TGFb通路的抑制,脂代谢、血管生成的增强以及细胞增殖能力下降等生物过程。
Follicular development and selection is a dynamic process and involves many genes expression changes. The selection and development of sheep follicle is closely related to the change of the diameter of follicle. In this study, healthy ovine small (diameter 1-2 mm ) and middle (diameter 3-4 mm ) follicles were used for RNA sequencing and gene expression pattern identification. Gene ontology analysis revealed that ovine follicular genes differed primarily in molecular functions of enzyme activity regulation and ion binding protein, in cellular components of extracellular matrix and plasma membrane, in biological behaviors of positive regulation of cell proliferation, cell communication, and immune stimulation response. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the differential genes pathways enrichment were dominated by pathways of complement and coagulation cascades, phagosome, cytokine-cytokine receptor interaction, TGF-beta signaling pathway, and axon guidance. From small follicle to middle follicles, genes upregulated includes lipid metabolism-related genes ( APOA1,APOD and APOE),IGF pathway genes (IGFBP1 and IGFBP7),TGFb pathway genes (DCN and INHBA),angiogenesis-related genes (MGP and TM4SF1), and extracellular matrix reconstruction genes (MMP1,MMP13,PTX3,and TIMP1), etc.. Genes down-regulated includes transcription factor genes C-FOS, EGR1, and FOSB), mitochondrially-encoded NADH dehydrogenase family members MT-ND1,MT-ND5,and MT-ND6. The results suggest that follicular selection may involve IGF and TGFb pathways inhibition, lipid metabolism and angiogenesis increase, and decline of cell proliferation.


[1] BARTLEWSKI P M, BEARD A P, COOK S J, et al. Ovarian follicular dynamics during anoestrus in ewes[J]. J Reprod Fertil, 1998, 113(2): 275-285.
[2]BARTLEWSKI P M, BEARD A P, RAWLINGS N C. An ultrasound-aided study of temporal relationships between the patterns of LH/FSH secretion, development of ovulatory-sized antral follicles and formation of corpora lutea in ewes[J]. Theriogenology, 2000, 54(2): 229-245.
[3]古丽米热?阿布都热依木,吴阳升,林嘉鹏,等. 绵羊卵丘细胞直径与卵母细胞质量的相关性[J]. 江苏农业科学,2014,42(12): 236-239.
[4]SEEKALLU S V, TOOSI B M, DUGGAVATHI R, et al. Ovarian antral follicular dynamics in sheep revisited: comparison among estrous cycles with three or four follicular waves[J]. Theriogenology, 2010, 73(5): 67-80.
[5]MULSANT P, LECERF F, FABRE S, et al. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes[J]. Proc Natl Acad Sci USA, 2001, 98(9): 5104-5109.
[6]SOUZA C J, MacDOUGALL C, CAMPELL B K, et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1B (BMPR1B) gene[J]. J Endocrinol, 2001, 169(2): R1-R6.
[7]WILSON T, WU X Y, JUENGEL J L, et al. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells[J]. Biol Reprod, 2001, 64(4): 1225-1235.
[8]HANRAHAN J P, GREGAN S M, MULSANT P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries)[J]. Biol Reprod, 2004, 70(4): 90-909.
[9]BODIN L, DI PASQUALE E, FABRE S, et al. A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep[J]. Endocrinology, 2007, 148(1): 393-400.
[10] ZHOU J, KUMAR T R, MATZUK M M, et al. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary[J]. Mol Endocrinol, 1997, 11(13): 1924-1933.
[11] SILVA J M, PRICE C A. Insulin and IGF-I are necessary for FSH-induced cytochrome P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in oestrogenic bovine granulosa cells in vitro[J]. J Endocrinol, 2002, 174(3): 499-507.
[12] GINTHER O J, BERGFELT D R, BEG M A, et al. In vivo effects of an intrafollicular injection of insulin-like growth factor 1 on the mechanism of follicle deviation in heifers and mares[J]. Biol Reprod, 2004, 70(1): 99-105.
[13] SKINNER M K, SCHMIDT M, SAVENKOVA M I, et al. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J]. Mol Reprod Dev, 2008, 75(9): 1457-1472.
[14] DRIANCOURT M A, WEBB R, FRY R C. Does follicular dominance occur in ewes?[J]. J Reprod Fertil, 1991, 93(1): 63-70.
[15] DUGGAVATHI R, BARTLEWSKI P M, BARRETT D M, et al. Patterns of antral follicular wave dynamics and accompanying endocrine changes in cyclic and seasonally anestrous ewes treated with exogenous ovine follicle-stimulating hormone during the inter-wave interval[J]. Biol Reprod, 2004, 70(3): 821-827.
[16] TOOSI B M, DAVIES K L, SEEKALLU S V, et al. Ovarian follicular dominance and the induction of daily follicular waves in the ewe[J]. Biol Reprod, 2010, 83(1): 122-129.
[17] LI R, YU C, LI Y, et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics, 2009, 25(15): 1966-1967.
[18] MORTAZAVI A, WILLIAMS B A, McCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008, 5(7): 621-628.
[19] DESAI S S, ROY B S, MAHALE S D. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction[J]. Reproduction, 2013, 146(6): R235-R248.
[20] KNIGHT P G, SATCHELL L, GLISTER C. Intra-ovarian roles of activins and inhibins[J]. Mol Cell Endocrinol, 2012, 359(1-2): 53-65.
[21] GINTHER O J, BEG M A, BERGFELT D R, et al. Follicle selection in monovular species[J]. Biol Reprod, 2001, 65(3): 638-647.
[22] HOBBS R J, HOWARD J, WILDT D E, et al. Absence of seasonal changes in FSHR gene expression in the cat cumulus-oocyte complex in vivo and in vitro[J]. Reproduction, 2012, 144(1): 111-122.
[23] WEBB R, CAMPBELL B K, GARVERICK H A, et al. Molecular mechanisms regulating follicular recruitment and selection[J]. J Reprod Fertil Suppl, 1999, 54: 33-48.
[24] ADAM M, SALLER S, STROBL S, et al. Decorin is a part of the ovarian extracellular matrix in primates and may act as a signaling molecule[J]. Hum Reprod, 2012, 27(11): 3249-3258.
[25] HATZIRODOS N, HUMMITZSCH K, IRVING-RODGERS H F, et al. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles[J]. PLoS One, 2015, 10(3): e0119800.
[26] CAMPBELL B K, CLINTON M, WEBB R. The role of anti-Mullerian hormone (AMH) during follicle development in a monovulatory species (sheep)[J]. Endocrinology, 2012, 153(9): 4533-4543.
[27] JEPPESEN J V, ANDERSON R A, KELSEY T W, et al. Which follicles make the most anti-Mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection[J]. Mol Hum Reprod, 2013, 19(8): 519-527.
[28] ZHANG T, DAI P, CHENG D, et al. Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility[J]. Reproduction, 2013, 147(2): 141-151.
[29] GAREVIK N, RANE A, BJORKHEM-BERGMAN L, et al. Effects of different doses of testosterone on gonadotropins, 25-hydroxyvitamin D3, and blood lipids in healthy men[J]. Subst Abuse Rehabil, 2014, 5: 121-127.

[30] REGASSA A, RINGS F, HOELKER M, et al. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells[J]. BMC Genomics, 2011, 12: 57.
[31] LIN C I, MERLEY A, SCIUTO T E, et al. TM4SF1: a new vascular therapeutic target in cancer[J]. Angiogenesis, 2014, 17(4): 897-907.
[32] MacCHIARELLI G, JIANG J Y, NOTTOLA S A, et al. Morphological patterns of angiogenesis in ovarian follicle capillary networks:a scanning electron microscopy study of corrosion cast[J]. Microsc Res Tech, 2006, 69(6): 459-468.
[33] YAO Y, NOWAK S, YOCHELIS A, et al. Matrix GLA protein, an inhibitory morphogen in pulmonary vascular development[J]. J Biol Chem, 2007, 282(41): 30131-30142.
[34] ROSEWELL K L, AL-ALEM L, ZAKERKISH F, et al. Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin[J]. Fertil Steril, 2015, 103(3): 826-833.
[35] STOUFFER R L, XU F, DUFFY D M. Molecular control of ovulation and luteinization in the primate follicle[J]. Front Biosci, 2007, 12: 297-307.[36] DONADEU F X, FAHIMINIYA S, ESTEVES C L, et al. Transcriptome profiling of granulosa and theca cells during dominant follicle development in the horse[J]. Biol Reprod, 2014, 91(5): 111.[37] RENGARAJ D, HWANG Y S, LIANG X H, et al. Comparative expression and regulation of TMSB4X in male reproductive tissues of rats and chickens[J]. J Exp Zool A Ecol Genet Physiol, 2013, 319(10): 584-595.[38] RUSSELL D L, DOYLE K M, GONZALES-ROBAYNA I, et al. Egr-1 induction in rat granulosa cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3′,5′-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1[J]. Mol Endocrinol, 2003, 17(4): 52-533.[39] SAYASITH K, BROWN K A, LUSSIER J G, et al. Characterization of bovine early growth response factor-1 and its gonadotropin-dependent regulation in ovarian follicles prior to ovulation[J]. J Mol Endocrinol, 2006, 37(2): 239-250.


[1]闫乐艳,GEORGE Mann,施振旦.利用Onapristone研究绵羊子宫内膜组织中孕酮对PGF2α分泌以及COX-2表达的影响[J].江苏农业学报,2017,(03):624.[doi:doi:10.3969/j.issn.1000-4440.2017.03.020]
 YAN Le-yan,GEORGE Mann,SHI Zhen-dan.Regulation of progesterone in PGF2α secretion and COX-2 expression by onapristone in ovine endometrial cells[J].,2017,(04):624.[doi:doi:10.3969/j.issn.1000-4440.2017.03.020]
 WU Yang-sheng,LIN Jia-peng,JIANG Xiang-ju,et al.Cloning, identification, and expression analysis of alternative splicing isoforms of FSHR in sheep[J].,2017,(04):630.[doi:doi:10.3969/j.issn.1000-4440.2017.03.021]
 LU Chun-xia,LIU Chang-bin,WAN Peng-cheng,et al.Establishment and application of indirect competitive enzyme-linked aptamer assay for ovPAG7 in sheeps[J].,2022,38(04):730.[doi:doi:10.3969/j.issn.1000-4440.2022.03.019]
 MENG Ke,ZHAO Wei,GUO Chen-hao,et al.Screening and functional prediction of miRNA related to intramuscular fat deposition in different sheep breeds[J].,2023,(04):1554.[doi:doi:10.3969/j.issn.1000-4440.2023.07.012]
 LI Shu-fang,WANG Hai-rong.Effects of heat stress on oxidative damage and immune function in sheep[J].,2023,(04):1606.[doi:doi:10.3969/j.issn.1000-4440.2023.07.017]


更新日期/Last Update: 2016-11-01