[1]齐红志,马俊峰,段俊枝,等.高温干旱复合胁迫对玉米器官发育、生理功能和产量形成的影响研究进展[J].江苏农业学报,2025,(06):1240-1248.[doi:doi:10.3969/j.issn.1000-4440.2025.06.021]
 QI Hongzhi,MA Junfeng,DUAN Junzhi,et al.Research progress on effects of combined heat and drought stress on organ development, physiological function and yield formation of maize[J].,2025,(06):1240-1248.[doi:doi:10.3969/j.issn.1000-4440.2025.06.021]
点击复制

高温干旱复合胁迫对玉米器官发育、生理功能和产量形成的影响研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1240-1248
栏目:
综述
出版日期:
2025-06-30

文章信息/Info

Title:
Research progress on effects of combined heat and drought stress on organ development, physiological function and yield formation of maize
作者:
齐红志1马俊峰2段俊枝1袁刘正3燕照玲1张会芳1陈海燕1燕树锋4赵霞4
(1.河南省农业科学院农业信息技术研究所,河南郑州450002;2.新乡市农业科学院,河南新乡453000;3.漯河市农业科学院,河南漯河462000;4.河南省农业科学院中药材研究所,河南郑州450002;5.河南农业大学农学院,河南郑州450046)
Author(s):
QI Hongzhi1MA Junfeng2DUAN Junzhi1YUAN Liuzheng3YAN Zhaoling1ZHANG Huifang1CHEN Haiyan1YAN Shufeng4ZHAO Xia4
(1.Agricultural Information and Technology Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;2.Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, China;3.Luohe Academy of Agricultural Sciences, Luohe 462000, China;4.Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China)
关键词:
玉米高温干旱器官发育光合特性激素含量产量
Keywords:
cornhigh temperature and droughtorgan developmentphotosynthetic characteristicshormone contentyield
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.021
文献标志码:
A
摘要:
在全球气候变暖背景下,高温干旱复合极端天气灾害频发,逐渐成为玉米生产中主要的非生物胁迫因素,严重影响了玉米的生长发育和产量。本文综述了高温干旱复合胁迫下玉米营养器官(根、茎、叶)和生殖器官(雌穗、雄穗)的形态、结构、发育及玉米产量形成的变化特征,并从光合荧光、抗氧化系统、内源激素等生理功能以及分子调控方面系统阐述了玉米对高温干旱复合胁迫响应的研究进展。建议今后研究应整合多种组学技术,从基因、功能蛋白、代谢物到性状系统揭示玉米应答高温干旱复合胁迫的机制,以提高玉米对高温干旱复合胁迫的耐受能力,实现农业减灾增效。
Abstract:
In the context of global warming, extreme weather disasters combined with high temperature and drought occur frequently, which gradually become the main abiotic stress factors in corn production, and have seriously affected the growth, development and yield of corn. The morphological, structural and developmental characteristics of maize vegetative organs (root, stem, leaf) and reproductive organs (female spikes and male spikes) and the changes of maize yield under the combined stress of high temperature and drought were reviewed. The research progress on maize responses to combined heat and drought stress had been systematically elucidated from the aspect of physiological functions including photosynthetic fluorescence, antioxidant systems, and endogenous hormones, as well as from the perspective of molecular regulation. It is proposed that future research should integrate multiple omics technologies to systematically reveal the mechanism of maize response to combined stress of high temperature and drought from the aspects of genes, functional proteins, metabolites to traits, so as to improve the tolerance of maize to combined stress of high temperature and drought,and achieve agricultural disaster reduction and efficiency enhancement.

参考文献/References:

[1]IPCC. Climate change 2023:land-climate interactions[R]. Cambridge,United Kingdom and New York,USA:Cambridge University Press,2023:133.
[2]YANG M X, MOU Y L, MENG Y R, et al. Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015[J]. Science of the Total Environment,2020,711:135139.
[3]ZANDALINAS S I, FRITSCHI F B, MITTLER R. Signal transduction networks during stress combination[J]. Journal of Experimental Botany,2020,71(5):1734-1741.
[4]EL HABTI A, FLEURY D, JEWELL N, et al. Tolerance of combined drought and heat stress is associated with transpiration maintenance and water soluble carbohydrates in wheat grains[J]. Frontiers in Plant Science,2020,11:568693.
[5]OSTMEYER T, PARKER N, JAENISCH B, et al. Impacts of heat,drought,and their interaction with nutrients on physiology,grain yield,and quality in field crops[J]. Plant Physiology Reports,2020,25(4):549-568.
[6]中国气象局气候变化中心. 中国气候变化蓝皮书(2023)[M]. 北京:科学出版社,2023.
[7]国家统计局. 国家统计局关于2023年粮食产量数据的公告[EB/OL]. (2023-12-11)
[2024-07-22]. https://www. stats. gov. cn/sj/zxfb/202312/t20231211_1945417. html.
[8]LI E, ZHAO J, PULLENS J W M, et al. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China[J]. Science of the Total Environment,2022,812:152461.
[9]侯宪斌,易强,滕峥,等. 不同玉米种质花期对干旱和高温胁迫的响应[J]. 南方农业学报,2023,54(6):1598-1611.
[10]CHOUDHARY M, KUMAR P, KUMAR P, et al. Molecular breeding for drought and heat stress in maize:revisiting the progress and achievements[M]. QTL Mapping in Crop Improvement. Amsterdam:Elsevier,2023:57-74.
[11]SINGH A, PANDEY H, PANDEY S, et al. Drought stress in maize:stress perception to molecular response and strategies for its improvement[J]. Functional & Integrative Genomics,2023,23(4):296.
[12]穆心愿,马智艳,卢良涛,等. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响[J]. 中国生态农业学报(中英文),2024,32(1):106-118.
[13]WANG L J, LIAO S H, HUANG S B, et al. Increasing concurrent drought and heat during the summer maize season in Huang-Huai-Hai Plain,China[J]. International Journal of Climatology,2018,38(7):3177-3190.
[14]王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响[D]. 北京:中国农业大学,2018.
[15]YU W Y, JI R P, WU J W, et al. Combined effects of heat and drought stress on the growth process and yield of maize (Zea mays L. ) in Liaoning province,China[J]. Atmosphere,2023,14(9):1397.
[16]GUO Y, ZHANG J Q, LI K W, et al. Quantifying hazard of drought and heat compound extreme events during maize (Zea mays L. ) growing season using Magnitude Index and Copula[J]. Weather and Climate Extremes,2023,40:100566.
[17]VILE D, PERVENT M, BELLUAU M, et al. Arabidopsis growth under prolonged high temperature and water deficit:independent or interactive effects?[J]. Plant,Cell & Environment,2012,35(4):702-718.
[18]RU C, HU X T, CHEN D Y, et al. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis,root morphology,and antioxidant defense in maize seedlings[J]. Environmental and Experimental Botany,2022,202:105010.
[19]BADR A, EL-SHAZLY H H, TARAWNEH R A, et al. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions[J]. Plants, 2020,9 (5):565.
[20]YANG X Y, ZHU X J, WEI J, et al. Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize[J]. BMC Plant Biology,2022,22(1):417.
[21]赵新宇. 高温干旱对夏玉米产量和生长发育的影响[D]. 泰安:山东农业大学,2023.
[22]PEI Y Y, LEI L, FAN X W, et al. Effects of high air temperature,drought,and both combinations on maize:a case study[J]. Plant Science,2023,327:111543.
[23]KARLOVA R, BOER D M, HAYES S, et al. Root plasticity under abiotic stress[J]. Plant Physiology,2021,187(3):1057-1070.
[24]THALMANN M, SANTELIA D. Starch as a determinant of plant fitness under abiotic stress[J]. New Phytologist,2017,214(3):943-951.
[25]KARAHARA I, HORIE T. Functions and structure of roots and their contributions to salinity tolerance in plants[J]. Breeding Science,2021,71(1):89-108.
[26]王庭杰,张亮,韩琼,等. 玉米茎秆细胞壁和组织构建对抗压强度的影响[J]. 植物科学学报,2015,33(1):109-115.
[27]HUSSAIN H A, MEN S N, HUSSAIN S, et al. Interactive effects of drought and heat stresses on morpho-physiological attributes,yield,nutrient uptake and oxidative status in maize hybrids[J]. Scientific Reports,2019,9(1):3890.
[28]彭金龙. 基于SIF的高温干旱复合胁迫下夏玉米生理生态响应特征监测研究[D]. 合肥:安徽农业大学,2021.
[29]倪锋,谢鹏飞,褚荣浩,等. 利用日光诱导叶绿素荧光估算高温干旱复合胁迫下夏玉米生理生态参数[J]. 江苏农业学报,2022,38(3):587-596.
[30]李小凡. 高温、干旱及其复合胁迫对夏玉米产量形成的影响[D]. 泰安:山东农业大学,2022.
[31]吕梦薇,胡笑涛,范晓懂,等. 拔节期高温干旱复合胁迫对夏玉米生长发育的影响[J]. 干旱地区农业研究,2022,40(6):82-89.
[32]邵靖宜,李小凡,于维祯,等. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响[J]. 中国农业科学,2021,54(17):3623-3631.
[33]李小凡,邵靖宜,于维祯,等. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J]. 中国农业科学,2022,55(18):3516-3529.
[34]HU J, ZHAO X Y, GU L M, et al. The effects of high temperature,drought,and their combined stresses on the photosynthesis and senescence of summer maize[J]. Agricultural Water Management,2023,289:108525.
[35]赵霞,穆心愿,马智艳,等. 不同玉米杂交种对花期高温、干旱复合胁迫的响应[J]. 河南农业科学,2017,46(8):32-37.
[36]闫振华. 花期高温干旱复合胁迫对玉米穗发育及物质生产能力的影响[D]. 郑州:河南农业大学,2021.
[37]闫振华,刘东尧,贾绪存,等. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J]. 中国农业科学,2021,54(17):3592-3608.
[38]闫振华,杨琴,陈艺博,等. 夏玉米穗形态、结构和生理对高温干旱的响应特征[C]//中国作物学会. 第二十届中国作物学会学术年会论文摘要集. 北京:中国作物学会,2023:59.
[39]LI H W, TIWARI M, TANG Y L, et al. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress[J]. Ecotoxicology and Environmental Safety,2022,246:114191.
[40]李红伟. 基于转录组学和代谢组学研究高温干旱胁迫对夏玉米花粉活力的影响[D]. 郑州:河南农业大学,2020.
[41]汤钰镂,王昊天,王丽娟,等. 高温干旱复合胁迫对夏玉米花粉、花丝发育和产量的影响[C]//中国作物学会. 第二十届中国作物学会学术年会论文摘要集. 北京:中国作物学会,2023:384.
[42]BHEEMANAHALLI R, VENNAM R R, RAMAMOORTHY P, et al. Effects of post-flowering heat and drought stresses on physiology,yield,and quality in maize (Zea mays L.)[J]. Plant Stress,2022,6:100106.
[43]王雅坤,李鸿萍,徐真真,等. 高温干旱复合胁迫对玉米光合生理的影响[J]. 河南农业科学,2023,52(5):17-23.
[44]MITTLER R. Abiotic stress,the field environment and stress combination[J]. Trends in Plant Science,2006,11(1):15-19.
[45]杨欢. 灌浆期高温干旱胁迫影响糯玉米籽粒产量形成的生理机制[D]. 扬州:扬州大学,2017.
[46]丁梦秋. 花后高温干旱胁迫影响糯玉米叶片衰老的生理机制研究[D]. 扬州:扬州大学,2019.
[47]谢鹏飞,倪锋,褚荣浩,等. 高温干旱复合胁迫下夏玉米冠层日光诱导叶绿素荧光与光合参数的关联机制[J]. 江苏农业科学,2022,50(16):65-72,78.
[48]齐月,张强,胡淑娟,等. 干旱胁迫下春玉米叶片光合参数对叶温的响应[J]. 干旱气象,2023,41(2):215-222.
[49]潘攀. H2O2和Ca2+/CaM参与了sHSP26保护的玉米叶绿体耐高温干旱复合胁迫[D]. 郑州:河南农业大学,2014.
[50]胡秀丽,李艳辉,杨海荣,等. HSP70可提高干旱高温复合胁迫诱导的玉米叶片抗氧化防护能力[J]. 作物学报,2010,36(4):636-644.
[51]王瑛. ABA和H2O2在干旱高温复合胁迫诱导的耐性不同的玉米品种sHSP和抗氧化防护酶基因表达中的作用[D]. 郑州:河南农业大学,2012.
[52]赵玉龙,李娜娜,赵飞云,等. Ca2+/CaM参与了sHSP26增强玉米叶绿体耐干旱高温复合胁迫[J]. 河南农业大学学报,2016,50(4):447-452.
[53]于康珂,孙宁宁,詹静,等. 高温胁迫对不同热敏型玉米品种雌雄穗生理特性的影响[J]. 玉米科学,2017,25(4):84-91.
[54]文章荣. 花后高温干旱胁迫对糯玉米籽粒发育的影响[D]. 扬州:扬州大学,2020.
[55]LIU X W, YU Y H, HUANG S B, et al. The impact of drought and heat stress at flowering on maize kernel filling:insights from the field and laboratory[J]. Agricultural and Forest Meteorology,2022,312:108733.
[56]TESFAYE K, KRUSEMAN G, CAIRNS J E, et al. Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments[J]. Climate Risk Management,2018,19:106-119.
[57]LIU X W, WANG X L, WANG X Y, et al. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering[J]. Environmental and Experimental Botany,2020,179:104213.
[58]BASHA E M, LEE G J, DEMELER B, et al. Chaperone activity of cytosolic small heat shock proteins from wheat[J]. European Journal of Biochemistry,2004,271(8):1426-1436.
[59]HU X L,LI Y H,LI C H,et al. Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress[J]. Journal of Plant Growth Regulation,2010,29(4):455-464.
[60]RATHEESH K R, NAGARAJAN N S, ARUNRAJ S P, et al. HSPIR:a manually annotated heat shock protein information resource[J]. Bioinformatics,2012, 28(21):2853-2855.
[61]ZHAO F Y, ZHANG D Y, ZHAO Y L, et al. The difference of physiological and proteomic changes in maize leaves adaptation to drought,heat,and combined both stresses[J]. Frontiers in Plant Science,2016,7:1471.
[62]CHO E K, CHOI Y J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants[J]. Biotechnology Letters,2009,31(4):597-606.
[63]刘瑞侠. HSP70上调了ABA诱导的干旱高温协同胁迫条件下玉米抗氧化防护酶活性[D]. 郑州:河南农业大学,2009.
[64]杨海荣,王瑛,张莉,等. H2O2和ABA对干旱高温复合胁迫诱导的玉米叶片sHSPs表达的影响[J]. 西北植物学报,2012,32(7):1328-1333.
[65]潘攀,杨彦芳,王瑛,等. 干旱高温复合胁迫下sHSPs基因在不同耐旱性玉米中的表达差异及其对ABA和H2O2的响应[J]. 西北植物学报,2013,33(8):1612-1620.
[66]李娜娜. Ca2+/CaM及CDPK在干旱高温复合胁迫诱导玉米sHSPs表达增加中的作用[D]. 郑州:河南农业大学,2016.
[67]葛淑娟. 玉米响应高温和干旱复合胁迫的数字基因表达谱分析及ZmHSP17.7基因的功能分析[D]. 泰安:山东农业大学,2014.
[68]孙爱清,葛淑娟,董伟,等. 玉米小分子热激蛋白ZmHSP17.7基因的克隆与功能分析[J]. 作物学报,2015,41(3):414-421.
[69]CAO L R, WANG G R, FAHIM A M, et al. Comprehensive analysis of the DnaJ/HSP40 gene family in maize (Zea mays L.) reveals that ZmDnaJ96 enhances abiotic stress tolerance[J]. Journal of Plant Growth Regulation,2024,43(5):1548-1569.
[70]王瑛,杨海荣,张莉,等. H2O2和ABA对干旱高温复合胁迫诱导的玉米叶片抗氧化防护基因表达的影响[J]. 河南农业大学学报,2011,45(6):634-639.
[71]杨海荣. ABA和H2O2对干旱高温复合胁迫诱导的玉米sHSPs和抗氧化防护酶的作用[D]. 郑州:河南农业大学,2011.
[72]HU X L, WU L J, ZHAO F Y, et al. Phosphoproteomic analysis of the response of maize leaves to drought,heat and their combination stress[J]. Frontiers in Plant Science,2015,6:298.
[73]TIZIANI R, MIRAS-MORENO B, MALACRIN A, et al. Drought,heat,and their combination impact the root exudation patterns and rhizosphere microbiome in maize roots[J]. Environmental and Experimental Botany,2022,203:105071.
[74]YUAN A, KUMAR S D, WANG H T, et al. Dynamic interplay among soil nutrients,rhizosphere metabolites,and microbes shape drought and heat stress responses in summer maize[J]. Soil Biology and Biochemistry,2024,191:109357.
[75]ZHANG T Y, LIN X M, SASSENRATH G F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean,but not for wheat[J]. Science of the Total Environment,2015,508:331-342.
[76]WANG X L, WANG J H, ZHU Y P, et al. Improving resilience to high temperature in drought:water replenishment enhances sucrose and amino acid metabolisms in maize grain[J]. The Plant Journal, 2024, 119(2):658-675.
[77]CHVEZ-ARIAS C C, RAMREZ-GODOY A, RESTREPO-DAZ H. Influence of drought,high temperatures,and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review[J]. Current Plant Biology,2022,32:100268.
[78]IVIWE N, LUCY M, ASHIRA R, et al. Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses:a review[J]. Pedosphere,2022,32(1):90-106.
[79]ROMERO-MUNAR A, AROCA R, ZAMARREO A M, et al. Dual inoculation with Rhizophagus irregularis and Bacillus megaterium improves maize tolerance to combined drought and high temperature stress by enhancing root hydraulics, photosynthesis and hormonal responses[J]. International Journal of Molecular Sciences,2023,24(6):5193.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(06):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(06):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(06):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(06):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(06):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(06):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(06):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2024-10-16基金项目:国家重点研发计划项目(2023YFD2303302);河南省重点研发专项(251111112700);农业农村部政府购买服务项目(19240710);河南省科技攻关计划项目(232102110187);河南省软科学研究计划项目(252400411117)作者简介:齐红志(1985-),女,河南西平人,硕士,助理研究员,主要从事作物生理生态研究。(E-mail)1240564836@qq.com通讯作者:王群,(E-mail)wangqun177@163.com;燕照玲,(E-mail)yanzl83@126.com
更新日期/Last Update: 2025-07-16