[1]杨爱清,杨小艺,徐辰武,等.低温胁迫下玉米根系转录组和代谢组分析[J].江苏农业学报,2025,(06):1063-1071.[doi:doi:10.3969/j.issn.1000-4440.2025.06.003]
 YANG Aiqing,YANG Xiaoyi,XU Chenwu,et al.Transcriptome and metabolome analysis of maize roots under low temperature stress[J].,2025,(06):1063-1071.[doi:doi:10.3969/j.issn.1000-4440.2025.06.003]
点击复制

低温胁迫下玉米根系转录组和代谢组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1063-1071
栏目:
遗传育种·生理生化
出版日期:
2025-06-30

文章信息/Info

Title:
Transcriptome and metabolome analysis of maize roots under low temperature stress
作者:
杨爱清杨小艺徐辰武李鹏程王芸芸王后苗
(江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学和分子育种重点实验室/江苏省粮食作物现代产业技术协同创新中心/扬州大学农学院,江苏扬州225009)
Author(s):
YANG AiqingYANG XiaoyiXU ChenwuLI PengchengWANG YunyunWANG Houmiao
(Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College of Yangzhou University, Yangzhou 225009, China)
关键词:
玉米低温胁迫转录组学代谢组学
Keywords:
maizelow temperature stresstranscriptomicsmetabolomics
分类号:
S513.01
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.003
文献标志码:
A
摘要:
低温是限制玉米苗期生长的主要非生物胁迫之一。为了明确低温胁迫对玉米根系生长影响的分子机制,本研究以玉米自交系B73为试验材料,对常温对照(白天温度28 ℃,夜间温度22 ℃,CK)和低温处理(白天温度15 ℃,夜间温度10 ℃)后不同时间点的主胚根生长进行动态监测,并对CK和低温处理1 d根系组织进行转录组和代谢组分析。结果表明,在低温胁迫下,玉米主胚根生长受到明显抑制。CK和低温处理根系代谢组中共鉴定到57种差异代谢物,这些代谢物主要参与淀粉和蔗糖代谢。CK和低温处理根系转录组分析共鉴定到2 769个差异表达基因,主要参与淀粉和蔗糖代谢、苯丙氨酸代谢。淀粉和蔗糖代谢是介导根系适应低温胁迫的关键通路。低温胁迫下,玉米根系中果糖和葡萄糖等可溶性糖含量显著增加。在淀粉和蔗糖代谢通路中共鉴定到26个差异表达基因,低温胁迫下12个基因表达水平显著上调,14个基因表达水平显著下调。本研究结果为进一步探索玉米根系适应低温胁迫的分子机制和品种遗传改良提供了基础和候选基因。
Abstract:
Cold stress is one of the primary abiotic stresses limiting the growth of maize seedlings. In order to study the effect of low temperature stress on maize roots, this study used maize inbred line B73 as the experimental material, and dynamically monitored the growth of the primary root at different time points under control (28 ℃ day/22 ℃ night) and low-temperature treatment (15 ℃ day/10 ℃ night). Additionally, we determined the transcriptome and metabolome of the root tissues from both the control group and the 1-day low-temperature treatment group. Phenotypic characterization results indicated that the growth of the primary root was significantly inhibited under low-temperature stress. Metabolomic analysis identified 57 differentially accumulated metabolites, predominantly enriched in starch and sucrose metabolism pathways. A total of 2 769 differentially expressed genes were identified by transcriptome analysis, which were mainly involved in starch and sucrose metabolism and phenylalanine metabolism. Further integration of transcriptomic and metabolomic analyses revealed that starch and sucrose metabolism were key pathways mediating root adaptation to low-temperature stress. Under low-temperature stress, the content of soluble sugars such as fructose and glucose significantly increased. A total of 26 differentially expressed genes were identified in the starch and sucrose metabolic pathways, with 12 genes showing significant upregulation and 14 genes showing significant downregulation. This study provides a theoretical foundation and candidate genes for further investigation into the molecular mechanisms of maize root adaptation to low-temperature stress and for genetic improvement.

参考文献/References:

[1]DOLFERUS R. To grow or not to grow:a stressful decision for plants[J]. Plant Science,2014,229:247-261.
[2]IMRAN Q M, FALAK N, HUSSAIN A, et al. Abiotic stress in plants;stress perception to molecular response and role of biotechnological tools in stress resistance[J]. Agronomy,2021,11(8):1579.
[3]URANO K, KURIHARA Y, SEKI M, et al. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses[J]. Current Opinion in Plant Biology,2010,13(2):132-138.
[4]CALICIOGLU O, FLAMMINI A, BRACCO S, et al. The future challenges of food and agriculture:an integrated analysis of trends and solutions[J]. Sustainability,2019,11(1):222.
[5]WANG R L, STEC A, HEY J, et al. The limits of selection during maize domestication[J]. Nature,1999,398(6724):236-239.
[6]HARDACRE A K, TURNBULL H L. The growth and development of maize (Zea mays L. ) at five temperatures[J]. Annals of Botany,1986,58(6):779-787.
[7]GRZYBOWSKI M, ADAMCZYK J, JONCZYK M, et al. Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs[J]. Journal of Experimental Botany,2019,70(10):2887-2904.
[8]TURK H, ERDAL S, DUMLUPINAR R. Carnitine-induced physio-biochemical and molecular alterations in maize seedlings in response to cold stress[J]. Archives of Agronomy and Soil Science,2020,66(7):925-941.
[9]LI M, SUI N, LIN L, et al. Transcriptomic profiling revealed genes involved in response to cold stress in maize[J]. Functional Plant Biology,2019,46(9):830-844.
[10]MIEDEMA P. The effects of low temperature on Zea mays[J]. Advances in Agronomy,1982,35:93-128.
[11]HOPE H J, MAAMARI R, SGUIN S, et al. Low temperature emergence potential of short season corn hybrids grown under controlled environment and plot conditions[J]. Canadian Journal of Plant Science,1992,72(1):83-91.
[12]VERHEUL M J, PICATTO C, STAMP P. Growth and development of maize (Zea mays L. ) seedlings under chilling conditions in the field[J]. European Journal of Agronomy,1996,5(1/2):31-43.
[13]史占忠,贲显明,张敬涛,等. 三江平原春玉米低温冷害发生规律及防御措施[J]. 黑龙江农业科学,2003(2):7-11.
[14]田宝星,于敏,李浩然,等. 黑龙江省春季低温指数及其对作物产量的影响[J]. 中国农学通报,2018,34(25):97-103.
[15]潘庆民,韩兴国,白永飞,等. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报,2002,19(1):30-38.
[16]KOCH K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:509-540.
[17]BORIBOONKASET T, THEERAWITAYA C, YAMADA N, et al. Regulation of some carbohydrate metabolism-related genes,starch and soluble sugar contents,photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress[J]. Protoplasma,2013,250(5):1157-1167.
[18]YAO Y X, DONG Q L, YOU C X, et al. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+,malate and soluble sugar accumulation[J]. Plant Physiology and Biochemistry,2011,49(10):1201-1208.
[19]PRICE J, LI T C, KANG S G, et al. Mechanisms of glucose signaling during germination of Arabidopsis[J]. Plant Physiology,2003,132(3):1424-1438.
[20]ROLDN M, GMEZ-MENA C, RUIZ-GARCA L, et al. Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark[J]. The Plant Journal,1999,20(5):581-590.
[21]ZHOU L, JANG J C, JONES T L, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(17):10294-10299.
[22]HANSON J, JOHANNESSON H, ENGSTRM P. Sugar-dependent alterations in Cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13[J]. Plant Molecular Biology,2001,45(3):247-262.
[23]LIU C T, MAO B G, OU S J, et al. OsbZIP71,a bZIP transcription factor,confers salinity and drought tolerance in rice[J]. Plant Molecular Biology,2014,84(1/2):19-36.
[24]LIU C T, OU S J, MAO B G, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications,2018,9(1):3302.
[25]LIU C T, SCHLPPI M R, MAO B G, et al. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal,2019,17(9):1834-1849.
[26]XIANG Y, HUANG Y M, XIONG L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement[J]. Plant Physiology,2007,144(3):1416-1428.
[27]TAMMINEN I, MAKELA P, HEINO P, et al. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis theliana[J]. Plant Journal,2001,25(1):1-8.
[28]KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357-360.
[29]LIAO Y, SMYTH G K, SHI W. FeatureCounts:an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics,2014,30(7):923-930.
[30]WANG L K, FENG Z X, WANG X, et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics,2010,26(1):136-138.
[31]KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research,2008,36(D):480-484.
[32]YI F, GU W, CHEN J, et al. High temporal-resolution transcriptome landscape of early maize seed development[J]. The Plant Cell,2019,31(5):974-992.
[33]XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold,drought,and salt stress[J]. The Plant Cell,2002,14(S):165-183.
[34]罗宁,魏湜,李晶,等. 低温胁迫对玉米苗期根系特征及电导率的影响[J]. 生态学杂志,2014,33(10):2694-2699.
[35]于文颖,冯锐,纪瑞鹏,等. 苗期低温胁迫对玉米生长发育及产量的影响[J]. 干旱地区农业研究,2013,31(5):220-226.
[36]刘芬. 低温胁迫对细枝木麻黄无性系生理指标和转录组的影响[D]. 长沙:中南林业科技大学,2015.
[37] PACHECO J M, RANOCHA P, KASULIN L, et al. Apoplastic classⅢ peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature[J]. Nature Communications,2022,13:1310.
[38]RUAN Y L. Sucrose metabolism:gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology,2014,65:33-67.
[39]KLOTKE J, KOPKA J, GATZKE N, et al. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation–evidence for a role of raffinose in cold acclimation[J]. Plant,Cell & Environment,2004,27(11):1395-1404.
[40]LI X, DU J, GUO J J, et al. The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose- and stachyose-transporting plants[J]. Journal of Plant Physiology,2018,228:150-157.
[41]ZOU Y P, MA L J, DONG H T, et al. PstTPS1,the trehalose-6-phosphate synthase gene of Puccinia striiformis f. sp. tritici,involves in cold stress response and hyphae development[J]. Physiological and Molecular Plant Pathology,2017,100:201-208.
[42] GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proceedings of the National Academy of Sciences,2002,99(25):15898-15903.
[43]LI Y M, LIANG G P, NAI G J, et al. VaSUS2 confers cold tolerance in transgenic tomato and Arabidopsis by regulation of sucrose metabolism and ROS homeostasis[J]. Plant Cell Reports,2023,42(3):505-520.
[44]ZHUANG L L, YUAN X Y, CHEN Y, et al. PpCBF3 from cold-tolerant Kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana[J]. PLoS One,2015,10(7):e0132928.
[45]YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene,OsMYB2,is involved in salt,cold,and dehydration tolerance in rice[J]. Journal of Experimental Botany,2012,63(7):2541-2556.
[46]时晓芳,林玲,黄秋秘,等. 阳光玫瑰葡萄冬果品质及糖代谢响应光质机理[J]. 南方农业学报,2024,55(8):2286-2294.
[47]孙劲伟,王圣燕,范弟武,等. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版),2024,48(1):140-146.
[48]张学彪,倪忠,庄义庆. 外源海藻糖对NaCl胁迫下大豆幼苗的影响[J]. 江苏农业科学,2024,52(21):116-122.
[49]樊瑶羽薇,仁增朗加,董建梅,等. 西藏野生石榴果实重要性状与综合评价 [J]. 南京林业大学学报(自然科学版),2023,47(4):73-80.
[50]侯会,苏涵,王维,等. 外源施用6-磷酸海藻糖生物制剂对甘薯营养品质和产量的影响[J]. 江苏农业科学,2024,52(18):105-113.
[51]陈瑶瑶,严良文,刘建汀,等. 黄秋葵果实发育过程中细胞壁组成成分、糖代谢及相关酶活性的变化[J]. 江苏农业学报,2023,39(5):1217-1224.
[52]ROLLAND F, SHEEN J. Sugar sensing and signalling networks in plants[J]. Biochemical Society Transactions,2005,33(Pt 1):269-271.
[53]ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants:conserved and novel mechanisms[J]. Annual Review of Plant Biology,2006,57:675-709.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(06):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(06):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(06):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]张曼,胡雪丹,徐锦华,等.葫芦砧木种质资源耐冷性评价[J].江苏农业学报,2016,(06):1390.[doi:doi:10.3969/j.issn.1000-4440.2016.06.030]
 ZHANG Man,HU Xue-dan,XU Jin-hua,et al.Evaluation on seedling cold tolerance of bottle gourd rootstock accessions[J].,2016,(06):1390.[doi:doi:10.3969/j.issn.1000-4440.2016.06.030]
[6]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[7]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(06):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[8]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[9]夏金婵,何奕昆.敲除DWF4基因提高拟南芥对低温胁迫的抗性[J].江苏农业学报,2015,(03):505.[doi:10.3969/j.issn.1000-4440.2015.03.007]
 XIA Jin-chan,HE Yi-kun.Improvement of cold tolerance by knockout of DWF4 gene in Arabidopsis[J].,2015,(06):505.[doi:10.3969/j.issn.1000-4440.2015.03.007]
[10]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(06):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[11]孙玉珺,秦东玲,伊凡,等.外源水杨酸对低温胁迫下玉米幼苗生长及生理特性的影响[J].江苏农业学报,2018,(04):726.[doi:doi:10.3969/j.issn.1000-4440.2018.04.002]
 SUN Yu-jun,QIN Dong-ling,YI Fan,et al.Effects of salicylic acid on growth and physiological property of maize seedling under low temperature stress[J].,2018,(06):726.[doi:doi:10.3969/j.issn.1000-4440.2018.04.002]

备注/Memo

备注/Memo:
收稿日期:2024-11-13基金项目:国家自然科学基金项目(32302654);江苏省重点研发项目(BE2022343)作者简介:杨爱清(1999-),女,山东德州人,硕士研究生,主要从事玉米遗传和分子育种研究。(E-mail)mz120221390@stu.yzu.edu.cn通讯作者:王后苗,(E-mail)houmiaowang@yzu.edu.cn
更新日期/Last Update: 2025-07-16