[1]邓云颢,徐灵,李鲁华,等.小麦TaLFNR1-7A基因的生物信息学及表达分析[J].江苏农业学报,2025,(06):1041-1049.[doi:doi:10.3969/j.issn.1000-4440.2025.06.001]
 DENG Yunhao,XU Ling,LI Luhua,et al.Bioinformatics and expression analysis of TaLFNR1-7A gene in wheat[J].,2025,(06):1041-1049.[doi:doi:10.3969/j.issn.1000-4440.2025.06.001]
点击复制

小麦TaLFNR1-7A基因的生物信息学及表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年06期
页码:
1041-1049
栏目:
遗传育种·生理生化
出版日期:
2025-06-30

文章信息/Info

Title:
Bioinformatics and expression analysis of TaLFNR1-7A gene in wheat
作者:
邓云颢12徐灵12李鲁华12宋婵1徐如宏12
(1.贵州大学农学院,贵州贵阳550025;2.国家小麦改良中心贵州分中心,贵州贵阳550025)
Author(s):
DENG Yunhao12XU Ling12LI Luhua12SONG Chan1XU Ruhong12
(1.College of Agriculture, Guizhou University, Guiyang 550025, China;2.Guizhou Branch of National Wheat Improvement Center, Guiyang 550025, China)
关键词:
小麦TaLFNR1-7A基因生物信息学基因克隆表达分析
Keywords:
wheatTaLFNR1-7A genebioinformaticsgene cloningexpression analysis
分类号:
S512
DOI:
doi:10.3969/j.issn.1000-4440.2025.06.001
文献标志码:
A
摘要:
铁氧还蛋白-NADP+氧化还原酶(FNR)是一种重要的酶,它在植物光合作用和细胞呼吸过程中发挥关键作用。本研究以普通小麦品种中国春为材料,利用RT-PCR技术克隆获得TaLFNR1-7A基因,对其进行生物信息学和基因表达分析,结果表明,TaLFNR1-7A基因CDS序列长度为1 086 bp,编码361个氨基酸;其编码的蛋白质为一个非跨膜的稳定的亲水性蛋白质,无信号肽,共含39个磷酸化位点;预测其定位于叶绿体;系统进化树以及氨基酸序列多重比对发现,基于TaLFNR1-7A基因普通小麦中国春与二粒小麦在亲缘性上更为接近,相似度为97.01%。启动子顺式作用元件分析结果显示,TaLFNR1-7A基因中共含有17种顺式作用元件,其中7个为光响应元件。经qRT-PCR分析发现,TaLFNR1-7A基因在小麦叶片中表达量最高,其次是茎中和胚芽中,根中表达量最低。TaLFNR1-7A基因响应多种非生物胁迫,这些非生物胁迫包括干旱(PEG-6000处理)、茉莉酸甲酯(MeJA)、氯化钠(NaCl)和脱落酸(ABA)等。本研究结果为进一步探讨TaLFNR1-7A基因在小麦生长发育过程中的作用机制提供了重要参考。
Abstract:
Ferritin-NADP+ reductase (FNR) is an important enzyme that plays a crucial role in photosynthesis and cellular respiration processes. This study used common wheat Chinese Spring as the material and cloned the TaLFNR1-7A gene using RT-PCR technology. Bioinformatics and gene expression analysis were performed on it. The results showed that the CDS sequence length of TaLFNR1-7A gene was 1 086 bp, encoding 361 amino acids. The encoded protein was a non-transmembrane stable hydrophilic protein, without a signal peptide, containing a total of 39 phosphorylation sites. It was predicted to be localized in the chloroplast. Phylogenetic analysis and multiple amino acid sequence alignment revealed that common wheat (Chinese Spring) and emmer wheat exhibited closer phylogenetic proximity based on the TaLFNR1-7A gene, with a sequence similarity of 97.01%. Analysis of promoter cis-acting elements revealed that the TaLFNR1-7A gene contained 17 cis-acting elements, including seven light-responsive elements. The qRT-PCR analysis revealed that the expression of TaLFNR1-7A gene was highest in wheat leaves, followed by stems and germs, with the lowest level observed in roots. The TaLFNR1-7A gene responded to multiple abiotic stresses, including drought (PEG-6000 treatment), methyl jasmonate (MeJA), sodium chloride (NaCl), and abscisic acid (ABA). The findings of this study provide a significant foundation for further exploring the functional mechanisms of the TaLFNR1-7A gene in wheat growth and development.

参考文献/References:

[1]GREEN L S, YEE B C, BUCHANAN B B, et al. Ferredoxin and ferredoxin-NADP reductase from photosynthetic and nonphotosynthetic tissues of tomato[J]. Plant Physiology,1991,96(4):1207-1213.
[2]MORIGASAKI S, JIN T, WADA K. Comparative studies on ferredoxin-NADP+ oxidoreductase isoenzymes derived from different organs by antibodies specific for the radish root-and leaf-enzymes[J]. Plant Physiology,1993,103(2):435-440.
[3]HANKE G T, KURISU G, KUSUNOKI M, et al. Fd:FNR electron transfer complexes:evolutionary refinement of structural interactions[J]. Photosynthesis Research,2004,81(3):317-327.
[4]OKUTANI S, HANKE G T, SATOMI Y, et al. Three maize leaf ferredoxin:NADPH oxidoreductases vary in subchloroplast location,expression,and interaction with ferredoxin[J]. Plant Physiology,2005,139(3):1451-1459.
[5]CONROY J P. Influence of elevated atmospheric CO2 concentrations on plant nutrition[J]. Australian Journal of Botany,1992,40(5):445.
[6]JIN T, MORIGASAKI S, WADA K. Purification and characterization of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vigna radiata) seedlings[J]. Plant Physiology,1994,106(2):697-702.
[7]MORIGASAKI S, TAKATA K, SUZUKI T, et al. Purification and characterization of a ferredoxin-NADP oxidoreductase-like enzyme from radish root tissues[J]. Plant Physiology,1990,93(3):896-901.
[8]SUZUKI A, OAKS A, JACQUOT J P, et al. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase:physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase[J]. Plant Physiology,1985,78(2):374-378.
[9]ARAKAKI A K, CECCARELLI E A, CARRILLO N. Plant-type ferredoxin-NADP+ reductases:a basal structural framework and a multiplicity of functions[J]. FASEB Journal,1997,11(2):133-140.
[10]CARRILLO N, CECCARELLI E A. Open questions in ferredoxin-NADP+ reductase catalytic mechanism[J]. European Journal of Biochemistry,2003,270(9):1900-1915.
[11]GUMMADOVA J O, FLETCHER G J, MOOLNA A, et al. Expression of multiple forms of ferredoxin NADP+ oxidoreductase in wheat leaves[J]. Journal of Experimental Botany,2007,58(14):3971-3985.
[12]BENZ J P, STENGEL A, LINTALA M, et al. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise[J]. The Plant Cell,2009,21(12):3965-3983.
[13]杨超,胡红涛,吴平,等. 高等植物铁氧还蛋白-NADP+氧化还原酶研究进展[J]. 植物生理学报,2014,50(9):1353-1366.
[14]HIGUCHI-TAKEUCHI M, ICHIKAWA T, KONDOU Y, et al. Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis[J]. Plant Physiology,2011,157(1):96-108.
[15]GRZYB J, GAGOS M, GRUSZECKI W I, et al. Interaction of ferredoxin:NADP+ oxidoreductase with model membranes[J]. Biochimica et Biophysica Acta,2008,1778(1):133-142.
[16]MOOLNA A, BOWSHER C G. The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat[J]. Journal of Experimental Botany,2010,61(10):2669-2681.
[17]BIANCHI V, HAGGRD-LJUNGQUIST E, PONTIS E, et al. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat[J]. Journal of Bacteriology,1995,177(15):4528-4531.
[18]KRAPP A R, RODRIGUEZ R E, POLI H O, et al. The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli[J]. Journal of Bacteriology,2002,184(5):1474-1480.
[19]赵秀秀,范延艮,田月月,等. 茶树‘黄金芽’叶绿体铁氧还蛋白-NADP+氧化还原酶基因的克隆与表达分析[J]. 分子植物育种,2021,19(15):4959-4967.
[20]吴晓佩. 文心兰离体培养优化及转化铁氧还蛋白基因研究[D]. 福州:福建农林大学,2017.
[21]谷云霞,王梦琦,张婷,等. 滇龙胆C2H2基因家族鉴定及响应茉莉酸甲酯诱导表达分析[J]. 江苏农业科学,2024,52(9):51-57.
[22]陈晨,胡秋倩,杨凯波,等. 茉莉酸甲酯调控植物生长发育的研究进展[J]. 江苏农业科学,2023,51(12):1-11.
[23]李蓉,吴晓佩,王雪晶,等. 文心兰RFNR的克隆、亚细胞定位及其与LFNR不同的胁迫响应机制研究[J]. 园艺学报,2018,45(11):2164-2176.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(06):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(06):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(06):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(06):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(06):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(06):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(06):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(06):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(06):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-09-06基金项目:国家自然科学基金项目(32360474、32160456、32360486);贵州省科技支撑计划项目[黔科合支撑(2021)一般272];贵州省粮油作物分子育种重点实验室项目[黔科合中引地(2023)008];贵州省高等学校功能农业重点实验室项目[黔教技(2023)007号]作者简介:邓云颢(1999-),男,贵州遵义人,硕士研究生,主要从事小麦分子遗传育种研究。(E-mail)953825981@qq.com通讯作者:徐如宏,(E-mail)xrhgz@163.com
更新日期/Last Update: 2025-07-16