参考文献/References:
[1]GREEN L S, YEE B C, BUCHANAN B B, et al. Ferredoxin and ferredoxin-NADP reductase from photosynthetic and nonphotosynthetic tissues of tomato[J]. Plant Physiology,1991,96(4):1207-1213.
[2]MORIGASAKI S, JIN T, WADA K. Comparative studies on ferredoxin-NADP+ oxidoreductase isoenzymes derived from different organs by antibodies specific for the radish root-and leaf-enzymes[J]. Plant Physiology,1993,103(2):435-440.
[3]HANKE G T, KURISU G, KUSUNOKI M, et al. Fd:FNR electron transfer complexes:evolutionary refinement of structural interactions[J]. Photosynthesis Research,2004,81(3):317-327.
[4]OKUTANI S, HANKE G T, SATOMI Y, et al. Three maize leaf ferredoxin:NADPH oxidoreductases vary in subchloroplast location,expression,and interaction with ferredoxin[J]. Plant Physiology,2005,139(3):1451-1459.
[5]CONROY J P. Influence of elevated atmospheric CO2 concentrations on plant nutrition[J]. Australian Journal of Botany,1992,40(5):445.
[6]JIN T, MORIGASAKI S, WADA K. Purification and characterization of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vigna radiata) seedlings[J]. Plant Physiology,1994,106(2):697-702.
[7]MORIGASAKI S, TAKATA K, SUZUKI T, et al. Purification and characterization of a ferredoxin-NADP oxidoreductase-like enzyme from radish root tissues[J]. Plant Physiology,1990,93(3):896-901.
[8]SUZUKI A, OAKS A, JACQUOT J P, et al. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase:physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase[J]. Plant Physiology,1985,78(2):374-378.
[9]ARAKAKI A K, CECCARELLI E A, CARRILLO N. Plant-type ferredoxin-NADP+ reductases:a basal structural framework and a multiplicity of functions[J]. FASEB Journal,1997,11(2):133-140.
[10]CARRILLO N, CECCARELLI E A. Open questions in ferredoxin-NADP+ reductase catalytic mechanism[J]. European Journal of Biochemistry,2003,270(9):1900-1915.
[11]GUMMADOVA J O, FLETCHER G J, MOOLNA A, et al. Expression of multiple forms of ferredoxin NADP+ oxidoreductase in wheat leaves[J]. Journal of Experimental Botany,2007,58(14):3971-3985.
[12]BENZ J P, STENGEL A, LINTALA M, et al. Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise[J]. The Plant Cell,2009,21(12):3965-3983.
[13]杨超,胡红涛,吴平,等. 高等植物铁氧还蛋白-NADP+氧化还原酶研究进展[J]. 植物生理学报,2014,50(9):1353-1366.
[14]HIGUCHI-TAKEUCHI M, ICHIKAWA T, KONDOU Y, et al. Functional analysis of two isoforms of leaf-type ferredoxin-NADP+-oxidoreductase in rice using the heterologous expression system of Arabidopsis[J]. Plant Physiology,2011,157(1):96-108.
[15]GRZYB J, GAGOS M, GRUSZECKI W I, et al. Interaction of ferredoxin:NADP+ oxidoreductase with model membranes[J]. Biochimica et Biophysica Acta,2008,1778(1):133-142.
[16]MOOLNA A, BOWSHER C G. The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat[J]. Journal of Experimental Botany,2010,61(10):2669-2681.
[17]BIANCHI V, HAGGRD-LJUNGQUIST E, PONTIS E, et al. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat[J]. Journal of Bacteriology,1995,177(15):4528-4531.
[18]KRAPP A R, RODRIGUEZ R E, POLI H O, et al. The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli[J]. Journal of Bacteriology,2002,184(5):1474-1480.
[19]赵秀秀,范延艮,田月月,等. 茶树‘黄金芽’叶绿体铁氧还蛋白-NADP+氧化还原酶基因的克隆与表达分析[J]. 分子植物育种,2021,19(15):4959-4967.
[20]吴晓佩. 文心兰离体培养优化及转化铁氧还蛋白基因研究[D]. 福州:福建农林大学,2017.
[21]谷云霞,王梦琦,张婷,等. 滇龙胆C2H2基因家族鉴定及响应茉莉酸甲酯诱导表达分析[J]. 江苏农业科学,2024,52(9):51-57.
[22]陈晨,胡秋倩,杨凯波,等. 茉莉酸甲酯调控植物生长发育的研究进展[J]. 江苏农业科学,2023,51(12):1-11.
[23]李蓉,吴晓佩,王雪晶,等. 文心兰RFNR的克隆、亚细胞定位及其与LFNR不同的胁迫响应机制研究[J]. 园艺学报,2018,45(11):2164-2176.
相似文献/References:
[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(06):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(06):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(06):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(06):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(06):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(06):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(06):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(06):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(06):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]