[1]王沙沙,何宁,汪庆昌,等.小麦γ-醇溶蛋白基因Tagli-γ-11的克隆及其互作蛋白质分析[J].江苏农业学报,2025,(05):833-839.[doi:doi:10.3969/j.issn.1000-4440.2025.05.001]
 WANG Shasha,HE Ning,WANG Qingchang,et al.Cloning of γ-gliadin gene Tagli-γ-11 and interactive proteins analysis in wheat[J].,2025,(05):833-839.[doi:doi:10.3969/j.issn.1000-4440.2025.05.001]
点击复制

小麦γ-醇溶蛋白基因Tagli-γ-11的克隆及其互作蛋白质分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年05期
页码:
833-839
栏目:
遗传育种·生理生化
出版日期:
2025-05-31

文章信息/Info

Title:
Cloning of γ-gliadin gene Tagli-γ-11 and interactive proteins analysis in wheat
作者:
王沙沙1何宁1汪庆昌1黄超1宋晓2晁岳恩1
(1.河南省农业科学院小麦研究所/河南省小麦生物学重点实验室,河南郑州450002;2.河南省农业科学院植物营养与资源环境研究所,河南郑州450002)
Author(s):
WANG Shasha1HE Ning1WANG Qingchang1HUANG Chao1SONG Xiao2CHAO Yue’en1
(1.Institute of Wheat Research, Henan Academy of Agricultural Sciences/Key Laboratory for Wheat Biology of Henan Province, Zhengzhou 450002, China;2.Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Science, Zhengzhou 450002, China)
关键词:
小麦Tagli-γ-11基因酵母双杂交回转验证
Keywords:
Triticum aestivum L.Tagli-γ-11 geneyeast two-hybrid systemrotation validation
分类号:
S512.1;Q756
DOI:
doi:10.3969/j.issn.1000-4440.2025.05.001
文献标志码:
A
摘要:
为进一步解析γ-醇溶蛋白基因在小麦面粉品质中的调控机制,本研究从郑麦158(低蛋白质含量、高面团强度)中克隆了小麦γ-醇溶蛋白基因Tagli-γ-11。生物信息学分析结果表明,该基因具有γ-醇溶蛋白的典型结构特征,含有8个保守的半胱氨酸残基,并在该蛋白质的重复区Ⅱ内第133~141 aa位置发现1个乳糜泻(CD)表位(PQQSFPQQQ)。利用酵母双杂交技术筛选郑麦158的cDNA文库,共筛选了8个可能与Tagli-γ-11互作的蛋白质,它们分别是半胱氨酸蛋白酶、果糖二磷酸醛缩酶、富含半胱氨酸和跨膜结构域蛋白1、(1,3∶1,4)-β-D-葡聚糖酶、生长素响应因子ARF17-like、细胞数目调控因子CNR8-like、泛素结构域蛋白DSK2b和转录因子PIF1-like。3个代表性候选蛋白质[富含半胱氨酸和跨膜结构域蛋白1、果糖二磷酸醛缩酶、(1,3∶1,4)-β-D-葡聚糖酶]的回转验证结果表明,它们与Tagli-γ-11均存在互作关系,推测Tagli-γ-11与这些蛋白质相互作用,主要参与了小麦籽粒中贮藏蛋白(如醇溶蛋白)和淀粉的合成与降解,以及生殖生长过程。
Abstract:
To further analyze the regulation mechanism of γ-gliadin gene in flour quality of wheat, the Tagli-γ-11 gene was successfully cloned from Zhengmai 158 (low protein content and high dough strength). Bioinformatic analysis revealed that this gene possessed the typical structural characteristics of γ-gliadin, containing eight conserved cysteine residues. A celiac disease (CD) epitope (PQQSFPQQQ) was identified within repeat domain Ⅱ of the Tagli-γ-11 protein, located at amino acid positions 133-141. Using the yeast two-hybrid (Y2H) system, the cDNA library of Zhengmai 158 was screened, yielding eight candidate proteins potentially interacting with Tagli-γ-11. These included cysteine protease, fructose-bisphosphate aldolase, cysteine-rich and transmembrane domain-containing protein 1, (1,3∶1,4)-β-D-glucanase, auxin response factor 17-like (ARF17-like), cell number regulator 8-like (CNR8-like), ubiquitin-associated domain-containing protein DSK2b, transcription factor PIF1-like. The rotation validation assays performed on cysteine-rich and transmembrane domain-containing protein 1, fructose-bisphosphate aldolase, and (1,3∶1,4)-β-D-glucanase confirmed physical interaction with Tagli-γ-11. Based on these results, it was hypothesized that Tagli-γ-11 interacted with these proteins and participated in the synthesis and degradation of storage proteins (such as gliadin) and starch within wheat grains, as well as in reproductive growth processes.

参考文献/References:

[1]MA W J, YU Z T, SHE M Y, et al. Wheat gluten protein and its impacts on wheat processing quality[J]. Frontiers of Agricultural Science and Engineering,2019,6(3):279-287.
[2]LIU D, YANG H M, ZHANG Z H, et al. An elite γ-gliadin allele improves end-use quality in wheat[J]. The New Phytologist,2023,239(1):87-101.
[3]ZHOU Z F, LIU C C, QIN M M, et al. Promoter DNA hypermethylation of TaGli-γ-2.1 positively regulates gluten strength in bread wheat[J]. Journal of Advanced Research,2022,36:163-173.
[4]CHEN Q, YANG C F, ZHANG Z H, et al. Unprocessed wheat γ-gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death[J]. The New Phytologist,2022,236(1):146-164.
[5]LUDVIGSSON J F, LEFFLER D A, BAI J C, et al. The Oslo definitions for coeliac disease and related terms[J]. Gut,2013,62(1):43-52.
[6]LUDVIGSSON J F, BAI J C, BIAGI F, et al. Diagnosis and management of adult coeliac disease:guidelines from the British Society of Gastroenterology[J]. Gut,2014,63(8):1210-1228.
[7]SOLLID L M, QIAO S W, ANDERSON R P, et al. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules[J]. Immunogenetics,2012,64(6):455-460.
[8]WANG D W, LI D, WANG J J, et al. Genome-wide analysis of complex wheat gliadins,the dominant carriers of celiac disease epitopes[J]. Scientific Reports,2017,7:44609.
[9]GIL-HUMANES J, PISTN F, TOLLEFSEN S, et al. Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(39):17023-17028.
[10]BARRO F, IEHISA J C M, GIMNEZ M J, et al. Targeting of prolamins by RNAi in bread wheat:effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins[J]. Plant Biotechnology Journal,2016,14(3):986-996.
[11]GUZMN-LPEZ M H, SNCHEZ-LEN S, MARN-SANZ M, et al. Oral consumption of bread from an RNAi wheat line with strongly silenced gliadins elicits no immunogenic response in a pilot study with celiac disease patients[J]. Nutrients,2021,13(12):4548.
[12]晁岳恩,王沙沙,杨剑,等. 影响小麦面团强度的贮藏蛋白基因表达研究[J]. 麦类作物学报,2023,43(7):857-864.
[13]CHEN J, ZHOU J H, SANDERS C K, et al. A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping[J]. Analytical Biochemistry,2009,390(1):29-37.
[14]王沙沙,黄绍敏,宋晓,等. 小麦氮素利用效率基因TaARE1-A等位变异与产量相关性状之间的关系分析[J]. 河南农业科学,2023,52(12):14-21.
[15] 宋晓,黄绍敏,张珂珂,等. 小麦硝酸盐转运蛋白TaNRT1.1-1A转录活性检测及互作蛋白筛选[J]. 麦类作物学报,2023,43(10):1227-1233.
[16]莫黎杰,刘夏瞳,李慧,等. 植物半胱氨酸蛋白酶在植物生长发育中的功能研究[J]. 生物技术通报,2021,37(6):202-212.
[17]UEMATSU K, SUZUKI N, IWAMAE T, et al. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants[J]. Journal of Experimental Botany,2012,63(8):3001-3009.
[18]苏在兴,李强,唐维,等. 甘薯果糖-1,6-二磷酸醛缩酶5基因(IbFBA5)的克隆与生物信息学分析[J]. 分子植物育种,2015,13(11):2469-2476.
[19]王敏,李丹. 环葡聚糖水解酶的应用研究[J]. 黑龙江科技信息,2009(17):24.
[20]刘至洋. 拟南芥生长素响应因子ARF17调控花粉管的生长[D]. 上海:上海师范大学,2016.
[21]GUO M, RUPE M A, DIETER J A, et al. Cell number regulator 1 affects plant and organ size in maize:implications for crop yield enhancement and heterosis[J]. The Plant Cell,2010,22(4):1057-1073.
[22]丁杰荣,马雅美,潘发枝,等. 泛素受体蛋白OsDSK2b负向调控水稻叶瘟和渗透胁迫抗性[J]. 作物学报,2023,49(6):1466-1479.
[23]荐红举,尚丽娜,金中辉,等. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报,2022,48(1):86-98.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(05):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(05):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(05):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(05):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(05):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(05):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(05):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-11-08基金项目:河南省科技攻关项目(232102110220);河南省农业科学院科技攻关项目;河南省农业科学院自主创新项目(2024ZC001)作者简介:王沙沙(1981-),女,河南焦作人,博士,助理研究员,研究方向为小麦分子育种。(E-mail)515605313@qq.com。何宁为共同第一作者。通讯作者:晁岳恩,(E-mail)nkychaoyueen@163.com
更新日期/Last Update: 2025-06-24