[1]刘颖,陈甜甜,王玲,等.基于扬麦38/周麦22 RIL群体的株高QTL定位及矮秆多抗小麦材料的鉴定[J].江苏农业学报,2025,(04):635-643.[doi:doi:10.3969/j.issn.1000-4440.2025.04.002]
 LIU Ying,CHEN Tiantian,WANG Ling,et al.QTL mapping of plant height in Yangmai 38/Zhoumai 22 recombinant inbred line population and identificaiton of new dwarf wheat lines with multiple resistance[J].,2025,(04):635-643.[doi:doi:10.3969/j.issn.1000-4440.2025.04.002]
点击复制

基于扬麦38/周麦22 RIL群体的株高QTL定位及矮秆多抗小麦材料的鉴定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年04期
页码:
635-643
栏目:
遗传育种·生理生化
出版日期:
2025-04-30

文章信息/Info

Title:
QTL mapping of plant height in Yangmai 38/Zhoumai 22 recombinant inbred line population and identificaiton of new dwarf wheat lines with multiple resistance
作者:
刘颖12陈甜甜2王玲2陈树林3赵霈泽24李俊梅25梁倩1万文涛2别同德2赵仁慧2刘炳亮1
(1.扬州大学/江苏省粮食作物现代产业技术协同创新中心,江苏扬州225009;2.江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室,江苏扬州225007;3.河南农业大学农学院,河南郑州450002;4.云南农业大学农业与生物技术学院,云南昆明650000;5.长江大学农学院,湖北荆州434025)
Author(s):
LIU Ying12CHEN Tiantian2WANG Ling2CHEN Shulin3ZHAO Peize24LI Junmei25LIANG Qian1WAN Wentao2BIE Tongde2ZHAO Renhui2LIU Bingliang1
(1.Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, China;2.Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province/Key Laboratory of Wheat Biology and Genetic Breeding in the Middle and Lower Yangtze River, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, China;3.College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China;4.College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650000, China;5.College of Agriculture, Yangtze University, Jingzhou 434025, China)
关键词:
小麦株高抗病基因分子标记
Keywords:
wheatplant heightresistance genesmolecular markers
分类号:
S512.103.4
DOI:
doi:10.3969/j.issn.1000-4440.2025.04.002
文献标志码:
A
摘要:
长江中下游麦区是中国第二大麦区,也是小麦赤霉病、白粉病和锈病等病害的流行区。培育矮秆抗倒伏、综合抗病性强的小麦新品种是小麦绿色生产的保障。扬麦38是多抗高产小麦新品种,高抗白粉病(含Pm21基因)和条锈病(含Yr26基因),中抗-抗赤霉病,但其株高偏高,抗倒伏性一般。周麦22是黄淮麦区的矮秆多抗骨干亲本,携带抗叶锈病Lr13基因和T1RS·1BL易位染色体。本研究以扬麦38/周麦22重组自交系(Recombinant inbred lines, RIL)群体为试验材料,利用小麦55K SNP(单核苷酸多态性)芯片获取基因型,对株高进行数量性状座位(Quantitative trait loci, QTL)分析,共检测到6个QTL,分布于2B、4B、4D、5A和7B染色体上,其中QPH.yaas-4B、QPH.yaas-4D在多个环境中均可稳定检测到,分别可解释8.97%~16.20%、23.72%~28.35%的表型变异,通过物理图比对及竞争性等位基因特异性PCR(KASP)标记验证,确定它们分别为矮秆基因Rht1、Rht2。遗传效应分析结果表明,Rht1、Rht2均可显著降低小麦株高,Rht2对株高的降低效应大于Rht1,二者共存时可使株高降低42.98%~47.16%。RIL群体的抗病基因分布结果显示,Pm21、Lr13、Yr26基因和T1RS·1BL易位染色体的纯合基因型频率分别为40.77%、37.41%、63.07%和29.98%,均显著偏离了期望值(50.00%)。结合田间农艺评价,筛选出5份聚合Pm21、Yr26和Lr13基因的矮秆小麦育种新材料。研究结果可为长江中下游麦区小麦抗病聚合育种提供理论支撑。
Abstract:
The middle and lower reaches of the Yangtze River (MLRYR) is the second largest wheat-growing region in China and also an epidemic area for multiple wheat diseases, such as Fusarium head blight (FHB), powdery mildew, and rust. Cultivating new dwarf wheat varieties with resistance to lodging and multiple diseases is essential for sustainable wheat production. Yangmai 38 is a high-yielding wheat variety with multiple disease resistances, including high resistance to powdery mildew (carrying Pm21) and stripe rust (carrying Yr26), and moderate resistance to FHB. However, it has relatively tall plant height and moderate lodging resistance. Zhoumai 22 is a dwarf and multi-resistant foundation parent carrying the leaf rust resistance gene Lr13 and the T1RS·1BL translocation chromosome, and is widely used in the Huang-Huai wheat region. In this study, the Yangmai 38/Zhoumai 22 recombinant inbred line (RIL) population was genotyped using the wheat 55K single nucleotide polymorphism (SNP) array for quantitative trait loci (QTL) mapping of plant height (PH). Six QTL for PH were detected on chromosomes 2B, 4B, 4D, 5A, and 7B. Two major and stable QTL, QPH.yaas-4B and QPH.yaas-4D, were identified across multiple environments, explaining 8.97%-16.20% and 23.72%-28.35% of the phenotypic variance, respectively. These QTL were verified as dwarfing genes Rht1 and Rht2 through physical map comparison and kompetitive allele-specific PCR (KASP) markers. Genetic effect analysis showed that both Rht1 and Rht2 significantly reduced plant height, with Rht2 exhibiting a greater dwarfing effect than Rht1. The coexistence of Rht1 and Rht2 could reduce plant height by 42.98%-47.16%. The distribution of resistance genes in the RIL population was also investigated, with homozygous genotype frequencies for Pm21, Lr13, Yr26, and T1RS·1BL being 40.77%, 37.41%, 63.07%, and 29.98%, respectively, all of which significantly deviated from the expected value (50.00%). Based on genotyping and agronomic evaluation, five dwarf wheat breeding lines with pyramided Pm21, Yr26, and Lr13 were selected for their better comprehensive traits. The results of this study provide theoretical support for breeding wheat varieties with pyramided multi-disease resistance in the MLRYR wheat region.

参考文献/References:

[1]赵仁慧,陈甜甜,王玲,等. 分子标记结合表型鉴定选育兼抗赤霉病、白粉病和条锈病弱筋小麦新品种扬麦38[J]. 麦类作物学报,2022,42(4):407-414.
[2]何中虎,兰彩霞,陈新民,等. 小麦条锈病和白粉病成株抗性研究进展与展望[J]. 中国农业科学,2011,44(11):2193-2215.
[3]CHEN P D, QI L L, ZHOU B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theoretical and Applied Genetics,1995,91(6/7):1125-1128.
[4]BIE T D, ZHAO R H, ZHU S Y, et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat[J]. Molecular Breeding,2015,35(10):189.
[5]WAN W T, ZHAO R H, CHEN T T, et al. Rapid development of wheat-Dasypyrum villosum compensating translocations resistant to powdery mildew using a triple marker strategy conducted on a large ph1b-induced population[J]. Theoretical and Applied Genetics,2023,136(7):148.
[6]CHEN X M. Epidemiology and control of stripe rust [Puccinia striiformisf. sp. tritici] on wheat[J]. Canadian Journal of Plant Pathology,2005,27(3):314-337.
[7]HAN D J, WANG Q L, CHEN X M, et al. Emerging Yr26-virulent races of Puccinia striiformis f. tritici are threatening wheat production in the Sichuan Basin, China[J]. Plant Disease,2015,99(6):754-760.
[8]贾秋珍,曹世勤,王晓明,等. 2017年-2018年甘肃省小麦条锈菌生理小种变异监测[J]. 植物保护,2021,47(2):214-218.
[9]董纯豪,李俣佳,唐建卫,等. 周8425B抗叶锈病基因LrZH84和LrZH22/Lr13在其衍生品种中的遗传解析[J]. 河南农业大学学报,2023,57(6):897-906.
[10]ZHANG P P, YIN G H, ZHOU Y, et al. QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese spring using high-density SNP markers[J]. Frontiers in Plant Science,2017,8:793.
[11]YAN X C, LI M M, ZHANG P P, et al. High-temperature wheat leaf rust resistance gene Lr13 exhibits pleiotropic effects on hybrid necrosis[J]. Molecular Plant,2021,14(7):1029-1032.
[12]PENG J, RICHARDS D E, HARTLEY N M, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature,1999,400(6741):256-261.
[13]SONG J, LI L, LIU B Y, et al. Fine mapping of reduced height locus RHT26 in common wheat[J]. Theoretical and Applied Genetics,2023,136(3):62.
[14]PEARCE S, SAVILLE R, VAUGHAN S P, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiology,2011,157(4):1820-1831.
[15]XIONG H C, ZHOU C Y, FU M Y, et al. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat[J]. Molecular Plant,2022,15(3):373-376.
[16]LI Y Y, XIAO J H, WU J J, et al. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation[J]. New Phytologist,2012,196(1):282-291.
[17]TIAN X L, XIA X C, XU D A, et al. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat[J]. New Phytologist,2022,233(2):738-750.
[18]MO Y, VANZETTI L S, HALE I, et al. Identification and characterization of Rht25,a locus on chromosome arm 6AS affecting wheat plant height,heading time,and spike development[J]. Theoretical and Applied Genetics,2018,131(10):2021-2035.
[19]贺军与,尹顺琼,陈云琼,等. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报,2021,47(5):974-982.
[20]杨松杰,张晓科,何中虎,等. 用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布[J]. 中国农业科学, 2006,39(8):1680-1688.
[21]唐建卫,高艳,胡润雨,等. 近十年基于重要小麦亲本周麦22的遗传改良[J]. 麦类作物学报,2021,41(3):263-271.
[22]WANG C M, ZHANG Y P, HAN D J, et al. SSR and STS markers for wheat stripe rust resistance gene Yr26[J]. Euphytica,2008,159(3):359-366.
[23]NAGY E D, EDER C, MOLNR-LNG M, et al. Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL. 1RS wheat-rye translocation[J]. Euphytica,2003,132(3):243-249.
[24]RASHEED A, WEN W E, GAO F M, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theoretical and Applied Genetics,2016,129(10):1843-1860.
[25]ZHAO R H, LIU B L, WAN W T, et al. Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method[J]. Theoretical and Applied Genetics,2023,136(1):1.
[26]BRNER A, PLASCHKE J, KORZUN V, et al. The relationships between the dwarfing genes of wheat and rye[J]. Euphytica,1996,89(1):69-75.
[27]DIVASHUK M G, VASIL′EV A V, BESPALOVA L A, et al. Identity of the Rht-11 and Rht-B1e reduced plant height genes[J]. Genetika,2012,48(7):897-900.
[28]BAZHENOV M S, DIVASHUK M G, AMAGAI Y, et al. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker[J]. Molecular Breeding,2015,35(11):213.
[29]MOHAN A, GRANT N P, SCHILLINGER W F, et al. Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth[J]. Physiologia Plantarum,2021,172(1):233-246.
[30]XU D A, JIA C F, LYU X R, et al. In silico curation of QTL-rich clusters and candidate gene identification for plant height of bread wheat[J]. The Crop Journal,2023,11(5):1480-1490.
[31]RICHARDS R A. The effect of dwarfing genes in spring wheat in dry environments.Ⅰ. Agronomic characteristics[J]. Australian Journal of Agricultural Research,1992,43(3):517.
[32]BUTLER J D, BYRNE P F, MOHAMMADI V, et al. Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels[J]. Crop Science,2005,45(3):939-947.
[33]唐娜,姜莹,何蓓如,等. 赤霉素敏感性不同矮秆基因对小麦胚芽鞘长度和株高的效应[J]. 中国农业科学,2009,42(11):3774-3784.
[34]董娜,张亚娟,张军刚,等. 分子标记辅助小麦抗白粉病基因Pm21和Pm13聚合育种[J]. 麦类作物学报,2014,34(12):1639-1644.
[35]蒋正宁,赵仁慧,陈甜甜,等. 分子标记辅助选育兼抗赤霉病、白粉病和黄花叶病毒病的小麦新品系[J]. 江苏农业学报,2021,37(5):1100-1107.
[36]ZHAO R H, LIU B L, JIANG Z N, et al. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL[J]. Plant Breeding,2019,138(5):503-512.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(04):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(04):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(04):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(04):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(04):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(04):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(04):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(04):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(04):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-11-11基金项目:国家自然科学基金项目(32101737、32472102);江苏里下河地区农业科学研究所科研专项[SJ(22)114]作者简介:刘颖(1999-),女,山东德州人,硕士研究生,主要从事小麦遗传育种研究。(E-mail)ly15628620431@163.com通讯作者:赵仁慧,(E-mail)zhaorh86@163.com;刘炳亮,(E-mail)blliu@yzu.edu.cn
更新日期/Last Update: 2025-05-26