参考文献/References:
[1]OKUBARA P A, DICKMAN M B, BLECHL A E. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium[J]. Plant Science,2014,228:61-70.
[2]LEGRIFI I, TAOUSSI M, AL FIGUIGUI J, et al. Oomycetes root rot caused by Pythium spp. and Phytophthora spp.: host range, detection, and management strategies, special case of olive trees[J]. Journal of Crop Health,2024,76(1):19-47.
[3]REEVES E R, KERNS J P, SHEW B B. Pythium spp. associated with root rot and stunting of winter crops in north Carolina[J]. Plant Disease,2021,105(11):3433-3442.
[4]FENG H, CHEN J J, YU Z, et al. Pathogenicity and fungicide sensitivity of Pythium and Phytopythium spp. associated with soybean in the Huang-Huai region of China[J]. Plant Pathology, 2020,69(6):1083-1092.
[5]HYDER S, GONDAL A S, RIZVI Z F, et al. Biological control of chili damping-off disease, caused by Pythium myriotylum[J]. Frontiers in Microbiology,2021,12:587431.
[6]JIA M, NI Y, LIU X T, et al. First report of root rot caused by Pythium myriotylum on sesame in China[J]. Plant Disease,2023,107(8):2558.
[7]PITMAN T L, PHILBROOK R N, WARREN J G. First report of Pythium myriotylum causing root rot in Cannabis sativa (L.) in California[J]. Plant Disease,2021,105(11):3766.
[8]CHOI S Y, LEE S Y, GEUM C O, et al. First report of wilt disease caused by Pythium myriotylum on peanut plants in Korea[J]. Plant Disease,2024,108(3):822.
[9]YAN Q, HU Y Q, ZHANG Q X, et al. Occurrence of root rot caused by Pythium aphanidermatum on mung bean (Vigna radiata) in China[J]. Plant Disease,2021,105(1):233.
[10]LAMICHHANE J R, DRR C, SCHWANCK A A, et al. Integrated management of damping-off diseases. A review[J]. Agronomy for Sustainable Development,2017,37(2):10.
[11]HUSSAIN S, SIDDIQUE T, SALEEM M, et al. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions[J]. Advances in Agronomy,2009,102:159-200.
[12]张妙宜,周登博,起登凤,等. 香蕉枯萎病综合防控研究进展[J]. 中国科学(生命科学),2024,54(10):1843-1852.
[13]YANG J, YE W W, WANG X M, et al. An improved method for the identification of soybean resistance to Phytophthora sojae applied to germplasm resources from the Huanghuaihai and Dongbei regions of China[J]. Plant Disease,2020,104(2):408-413.
[14]DORRANCE A E, BERRY S A, ANDERSON T R, et al. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean[J]. Plant Health Progress,2008,9(1):35.
[15]邓亚辉,陈全家,曲延英. 抗大丽轮枝菌黄萎病的棉花种质资源鉴定与分析[J].分子植物育种,2022,20(11):3677-3685.
[16]ZHANG X M, JOHNSON C, REED D. Management of Pythium myriotylum in tobacco transplant production greenhouses[J]. Plant Health Progress,2021,22(3):250-259.
[17]武泉栋,王新妤,姚玲,等. 干旱和盐单一胁迫对绿豆种子萌发期的影响及其种质评价[J]. 江苏农业科学,2024,52(10):120-128.
[18]刘金洋,林云,陈景斌,等. 绿豆C3H和NBS转录因子家族成员鉴定及盐胁迫响应分析[J]. 江苏农业学报,2023,39(5):1097-1109.
[19]吕重阳,张晓燕,黄璐,等. 不同绿豆品种的芽用特性评价及其专用品种筛选[J]. 江苏农业科学,2023,51(4):152-163.
[20]闫强,丁佩,张勤雪,等. 绿豆根腐病病原菌分离和致病力鉴定[J]. 江苏农业科学,2021,49(6):86-92.
[21]OERKE E C, DEHNE H W. Safeguarding production:losses in major crops and the role of crop protection[J]. Crop Protection,2004,23(4):275-285.
[22]NELSON R, WIESNER-HANKS T, WISSER R, et al. Navigating complexity to breed disease-resistant crops[J]. Nature Reviews Genetics,2018,19(1):21-33.
[23]LIU Y X, ZHENG Y L, WEI Y M, et al. Genotypic differences to crown rot caused by Fusarium pseudograminearum in barley (Hordeum vulgare L.)[J]. Plant Breeding,2012,131(6):728-732.
[24]金京京,齐永志,王丽,等. 小麦种质对茎基腐病抗性评价及优异种质筛选[J]. 植物遗传资源学报,2020,21(2):308-313.
[25]DENG Y W, NING Y S, YANG D L, et al. Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops[J]. Molecular Plant,2020,13(10):1402-1419.
[26]NGOU B P M, DING P T, JONES J D G. Thirty years of resistance:zig-zag through the plant immune system[J]. The Plant Cell,2022,34(5):1447-1478.
相似文献/References:
[1]李阳,袁娜,刘大亮,等.绿豆Copia类反转座子全基因组注释及进化分析[J].江苏农业学报,2020,(04):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
LI Yang,YUAN Na,LIU Da-liang,et al.Annotation and evolutionary analysis of the Copia retrotransposons in mung bean[J].,2020,(03):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
[2]李灵慧,吴然然,陈景斌,等.基于PARMS技术的绿豆抗叶斑病基因VrTAF5分子标记的开发[J].江苏农业学报,2021,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
LI Ling-hui,WU Ran-ran,CHEN Jing-bin,et al.Development of molecular markers of mung bean leaf spot disease resistance gene VrTAF5 based on PARMS technology[J].,2021,(03):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
[3]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(03):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
[4]刘金洋,林云,陈景斌,等.绿豆C3H和NBS转录因子家族成员鉴定及盐胁迫响应分析[J].江苏农业学报,2023,(05):1097.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]
LIU Jin-yang,LIN Yun,CHEN Jing-bin,et al.Identification and salt stress response analysis of mungbean C3H and NBS transcription factor family members[J].,2023,(03):1097.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]
[5]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(03):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
[6]蒋东山,刘金洋,张浩淼,等.基于CNN和Transformer的绿豆干旱胁迫识别模型[J].江苏农业学报,2025,(01):87.[doi:doi:10.3969/j.issn.1000-4440.2025.01.011]
JIANG Dongshan,LIU Jinyang,ZHANG Haomiao,et al.Drought stress recognition model of mung bean based on CNN and Transformer[J].,2025,(03):87.[doi:doi:10.3969/j.issn.1000-4440.2025.01.011]