[1]徐灵,洪鼎立,邓云颢,等.小麦TaSRG1基因的克隆、生物信息学分析及表达特征[J].江苏农业学报,2024,(12):2193-2200.[doi:doi:10.3969/j.issn.1000-4440.2024.12.001]
 XU Ling,HONG Dingli,DENG Yunhao,et al.Cloning, bioinformatics analysis and expression profiles of TaSRG1 gene in wheat[J].,2024,(12):2193-2200.[doi:doi:10.3969/j.issn.1000-4440.2024.12.001]
点击复制

小麦TaSRG1基因的克隆、生物信息学分析及表达特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2193-2200
栏目:
遗传育种·生理生化
出版日期:
2024-12-30

文章信息/Info

Title:
Cloning, bioinformatics analysis and expression profiles of TaSRG1 gene in wheat
作者:
徐灵洪鼎立邓云颢徐如宏李鲁华
(贵州大学农学院/国家小麦改良中心贵州分中心,贵州贵阳550025)
Author(s):
XU LingHONG DingliDENG YunhaoXU RuhongLI Luhua
(College of Agriculture, Guizhou University/Guizhou Branch of National Wheat Improvement Center, Guiyang 550025, China)
关键词:
小麦TaSRG1基因克隆生物信息学分析表达分析
Keywords:
wheatTaSRG1gene cloningbioinformatics analysisexpression analysis
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.001
文献标志码:
A
摘要:
为明确小麦锌指蛋白TaSRG1的生物学功能,本研究以中国春小麦为材料,克隆获得TaSRG1基因,并利用在线软件对其编码的蛋白质进行生物信息学分析,通过RT-PCR和qRT-PCR技术分析TaSRG1基因在小麦组织中的表达情况及其对激素以及盐和干旱等逆境胁迫的响应特征。结果表明:小麦TaSRG1基因编码序列(CDS)全长1 047 bp,基因编码的蛋白质为非分泌亲水性稳定蛋白,定位于细胞质,含23个磷酸化位点。多重序列比对和系统进化树分析结果表明小麦TaSRG1基因的生物学功能与二粒小麦最为相近;TaSRG1启动子区域含18种顺式作用元件,其中5种与植物激素有关。TaSRG1基因在小麦根、茎、叶中均有表达,茎中的表达量最高;激素(ABA、MeJA)、盐(NaCl)和干旱胁迫处理后3~72 h,小麦叶片中TaSRG1基因的相对表达量总体均呈先增加后降低的趋势。本研究结果为小麦SRG1基因的育种应用提供依据。
Abstract:
In order to clarify the biological function of wheat zinc finger protein TaSRG1, TaSRG1 gene was cloned from Chinese spring wheat, and the bioinformatics analysis of its encoded protein was carried out by online software. The expression of TaSRG1 gene in wheat tissues and its response to stresses such as hormones, salt and drought were analyzed by RT-PCR and qRT-PCR. The results showed that the coding sequence (CDS) of TaSRG1 gene in wheat was 1 047 bp in length, and the protein encoded by the gene was a non-secreted hydrophilic stable protein, located in the cytoplasm, containing 23 phosphorylation sites. Multiple sequence alignment and phylogenetic tree analysis indicated that the biological function of wheat TaSRG1 gene was most similar to that of emmer wheat. The TaSRG1 promoter region contained 18 cis-acting elements, of which five were related to plant hormones. TaSRG1 gene was expressed in roots, stems and leaves of wheat, and the expression level in stems was the highest. The relative expression of TaSRG1 gene in wheat leaves increased first and then decreased at 3-72 h after hormone (ABA, MeJA), salt (NaCl) and drought stress treatments. The results of this study provide a basis for the breeding application of wheat SRG1 gene.

参考文献/References:

[1]吴玉俊,吴旺泽. 植物模式识别受体与先天免疫[J]. 植物生理学报,2021,57(2):301-312.
[2]GRANT J J, LOAKE G J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiology,2000,124(1):21-29.
[3]GUPTA K J, FERNIE A R, KAISER W M, et al. On the origins of nitric oxide[J]. Trends in Plant Science,2011,16(3):160-168.
[4]YU M D, LAMATTINA L, SPOEL S H, et al. Nitric oxide function in plant biology:a redox cue in deconvolution[J]. New Phytologist,2014,202(4):1142-1156.
[5]TORRES M A, DANGL J L, JONES J D G, et al. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(1):517-522.
[6]PARANI M, RUDRABHATLA S, MYERS R, et al. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis[J]. Plant Biotechnology Journal,2004,2(4):359-366.
[7]ZAGO E, MORSA S, DAT J F, et al. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco[J]. Plant Physiology,2006,141(2):404-411.
[8]PALMIERI M C, SELL S, HUANG X, et al. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana:a bioinformatics approach[J]. Journal of Experimental Botany,2008,59(2):177-186.
[9]BELLIN D, ASAI S T, DELLEDONNE M, et al. Nitric oxide as a mediator for defense responses[J]. Molecular Plant-Microbe Interactions,2013,26(3):271-277.
[10]CUI B M, PAN Q N, CLARKE D, et al. S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity[J]. Nat Commun,2018,9(1):4226.
[11]CUI B M, XU S W, LI Y, et al. The Arabidopsis zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide[J]. New Phytologist,2021,230(1):259-274.
[12]CHO S M, KANG E Y, KIM M S, et al. Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis thaliana[J]. Botany,2010,88(5):452-461.
[13]LIU J J J, KRENZ D C, GALVEZ A F, et al. Galactinol synthase(GS):increased enzyme activity and levels of mRNA due to cold and desiccation[J]. Plant Science,1998,134(1):11-20.
[14]PANIKULANGARA T J, EGGERS-SCHUMACHER G, WUNDERLICH M, et al. Galactinol synthasel:a novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiol,2004,136(2):3148-3158.
[15]QIN R,AKHTER D ,YANG C C, et al. SRG1,encoding a kinesin-4 protein,is an important factor for determining grain shape in rice[J]. Rice Science,2018,25(6):297-307.
[16]ZHANG M, ZHANG B C, QIAN Q, et al. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice[J]. Plant Journal,2010,63(2):312-328.
[17]LI J, JIANG J F, QIAN Q, et al. Mutation of rice BC12/GDD1 which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation[J]. The Plant Cell,2011,23(2):628-640.
[18]YU H P, REN D Y, ZHU Y Z, et al. Multi-tillering dwarf1, a new allele of brittle culm 12, affects plant height and tiller in rice[J]. Sci Bull,2016,61(23):1810-1817.
[19]FANG X M, WANG Y Q, CUI J B, et al. Transcriptome and metabolome analyses reveal the key genes related to grain size of big grain mutant in Tartary Buckwheat (Fagopyrum tartaricum)[J]. Front in Plant Sci,2022,13:1079212.
[20]TRUESDELL G M,DICKMAN M B. Isolation of pathogen/stress-inducible cDNAs from alfalfa by mRNA differential display[J]. Plant Molecular Biology,1997, 33(4):737-743.
[21]杜琳颖. 小麦转录因子TaERF87与TaDi19-7的鉴定及其在非生物胁迫响应中的功能研究[D].杨凌:西北农林科技大学,2023.
[22]ABID M, ALI S, QI L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.)[J]. Sci Rep,2018,8(1):4615.
[23]赵广才,常旭虹,王德梅,等. 小麦生产概况及其发展[J]. 作物杂志,2018(4):1-7.
[24]WANG J Y, CHITSAZ F, DERBYSHIRE M K. The conserved domain database in 2023[J]. Nucleic Acids Res,2023,51(D1):384-388.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(12):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(12):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(12):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(12):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(12):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(12):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(12):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(12):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(12):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(12):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-04-17基金项目:国家自然科学基金项目(32160456、32360474);贵州省科技计划项目[黔科合基础(2020)1Z018号]作者简介:徐灵(1999-),女,贵州毕节人,硕士研究生,主要从事小麦分子遗传育种研究。(E-mail)1968752543@qq.com通讯作者:李鲁华,(E-mail)luhua_li@163.com
更新日期/Last Update: 2025-01-23