参考文献/References:
[1]吴玉俊,吴旺泽. 植物模式识别受体与先天免疫[J]. 植物生理学报,2021,57(2):301-312.
[2]GRANT J J, LOAKE G J. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiology,2000,124(1):21-29.
[3]GUPTA K J, FERNIE A R, KAISER W M, et al. On the origins of nitric oxide[J]. Trends in Plant Science,2011,16(3):160-168.
[4]YU M D, LAMATTINA L, SPOEL S H, et al. Nitric oxide function in plant biology:a redox cue in deconvolution[J]. New Phytologist,2014,202(4):1142-1156.
[5]TORRES M A, DANGL J L, JONES J D G, et al. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(1):517-522.
[6]PARANI M, RUDRABHATLA S, MYERS R, et al. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis[J]. Plant Biotechnology Journal,2004,2(4):359-366.
[7]ZAGO E, MORSA S, DAT J F, et al. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco[J]. Plant Physiology,2006,141(2):404-411.
[8]PALMIERI M C, SELL S, HUANG X, et al. Nitric oxide-responsive genes and promoters in Arabidopsis thaliana:a bioinformatics approach[J]. Journal of Experimental Botany,2008,59(2):177-186.
[9]BELLIN D, ASAI S T, DELLEDONNE M, et al. Nitric oxide as a mediator for defense responses[J]. Molecular Plant-Microbe Interactions,2013,26(3):271-277.
[10]CUI B M, PAN Q N, CLARKE D, et al. S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity[J]. Nat Commun,2018,9(1):4226.
[11]CUI B M, XU S W, LI Y, et al. The Arabidopsis zinc finger proteins SRG2 and SRG3 are positive regulators of plant immunity and are differentially regulated by nitric oxide[J]. New Phytologist,2021,230(1):259-274.
[12]CHO S M, KANG E Y, KIM M S, et al. Jasmonate-dependent expression of a galactinol synthase gene is involved in priming of systemic fungal resistance in Arabidopsis thaliana[J]. Botany,2010,88(5):452-461.
[13]LIU J J J, KRENZ D C, GALVEZ A F, et al. Galactinol synthase(GS):increased enzyme activity and levels of mRNA due to cold and desiccation[J]. Plant Science,1998,134(1):11-20.
[14]PANIKULANGARA T J, EGGERS-SCHUMACHER G, WUNDERLICH M, et al. Galactinol synthasel:a novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiol,2004,136(2):3148-3158.
[15]QIN R,AKHTER D ,YANG C C, et al. SRG1,encoding a kinesin-4 protein,is an important factor for determining grain shape in rice[J]. Rice Science,2018,25(6):297-307.
[16]ZHANG M, ZHANG B C, QIAN Q, et al. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice[J]. Plant Journal,2010,63(2):312-328.
[17]LI J, JIANG J F, QIAN Q, et al. Mutation of rice BC12/GDD1 which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation[J]. The Plant Cell,2011,23(2):628-640.
[18]YU H P, REN D Y, ZHU Y Z, et al. Multi-tillering dwarf1, a new allele of brittle culm 12, affects plant height and tiller in rice[J]. Sci Bull,2016,61(23):1810-1817.
[19]FANG X M, WANG Y Q, CUI J B, et al. Transcriptome and metabolome analyses reveal the key genes related to grain size of big grain mutant in Tartary Buckwheat (Fagopyrum tartaricum)[J]. Front in Plant Sci,2022,13:1079212.
[20]TRUESDELL G M,DICKMAN M B. Isolation of pathogen/stress-inducible cDNAs from alfalfa by mRNA differential display[J]. Plant Molecular Biology,1997, 33(4):737-743.
[21]杜琳颖. 小麦转录因子TaERF87与TaDi19-7的鉴定及其在非生物胁迫响应中的功能研究[D].杨凌:西北农林科技大学,2023.
[22]ABID M, ALI S, QI L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.)[J]. Sci Rep,2018,8(1):4615.
[23]赵广才,常旭虹,王德梅,等. 小麦生产概况及其发展[J]. 作物杂志,2018(4):1-7.
[24]WANG J Y, CHITSAZ F, DERBYSHIRE M K. The conserved domain database in 2023[J]. Nucleic Acids Res,2023,51(D1):384-388.
相似文献/References:
[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(12):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(12):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(12):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(12):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(12):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(12):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(12):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(12):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(12):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(12):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]