[1]万文涛,赵霈泽,陈甜甜,等.含抗白粉病基因PmV小麦-簇毛麦补偿性插入易位系Dv6-IT2的创制与鉴定[J].江苏农业学报,2024,(11):2013-2020.[doi:doi:10.3969/j.issn.1000-4440.2024.11.004]
 WAN Wentao,ZHAO Peize,CHEN Tiantian,et al.Creation and identification of compensating intercalary translocation line Dv6-IT2 carrying the powdery mildew resistance gene PmV from Dasyprum villosum[J].,2024,(11):2013-2020.[doi:doi:10.3969/j.issn.1000-4440.2024.11.004]
点击复制

含抗白粉病基因PmV小麦-簇毛麦补偿性插入易位系Dv6-IT2的创制与鉴定()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2013-2020
栏目:
植物保护
出版日期:
2024-11-30

文章信息/Info

Title:
Creation and identification of compensating intercalary translocation line Dv6-IT2 carrying the powdery mildew resistance gene PmV from Dasyprum villosum
作者:
万文涛1赵霈泽12陈甜甜1王玲1汪尊杰1张旭3陈一鸣3别同德1赵仁慧1
(1.农业农村部长江中下游小麦生物学与遗传育种重点实验室/江苏里下河地区农业科学研究所,江苏扬州225007;2.云南农业大学农学与生物技术学院,云南昆明650000;3.南京农业大学作物遗传与种质创新利用国家重点实验室,江苏南京210095)
Author(s):
WAN Wentao1ZHAO Peize12CHEN Tiantian1WANG Ling1WANG Zunjie1ZHANG Xu3CHEN Yiming3BIE Tongde1ZHAO Renhui1
(1.Key Laboratory of Wheat Biology and Genetic Improvement for Low Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China;2.College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650000, China;3.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
小麦簇毛麦抗白粉病基因PmV插入易位
Keywords:
wheatDasyprum villosumpowdery mildew resistance gene PmVintercalary translocation
分类号:
S512.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.004
文献标志码:
A
摘要:
白粉病是中国小麦主要病害之一。抗白粉病基因PmV和Pm21是来自不同簇毛麦种质的同源基因,分别以T6V#4S·6DL和T6V#2S·6AL易位系的形式被育种利用。Pm21基因在中国已得到广泛应用,而作为其后备抗源的PmV基因却极少被利用,主要原因是T6V#4S·6DL易位染色体的外源片段过大,在亲子代传递率低,育种利用困难。创制含PmV的补偿性小片段易位是提高传递率、减少外源基因冗余的重要途径。本研究利用均携带PmV基因的顶端易位系Dv6T25与近着丝粒易位系Dv6T36杂交,根据外源重叠区重组原理,在F2代分离群体中筛选出1个携PmV基因的补偿性中间插入易位系Dv6-IT2。利用簇毛麦参考基因组序列信息进行标记加密分析,结果表明易位片段双侧断裂重接位点分别介于35.1~36.3 Mb和85.1~85.3 Mb,外源易位片段长度约为50 Mb。将Dv6-IT2与大面积推广品种扬麦23杂交构建F2分离群体,标记结果显示,抗感比符合3∶1分离比,说明PmV基因在新型易位中可正常传递。本研究成功创制了Dv6-IT2,将促进PmV基因在小麦抗白粉病育种中的利用。
Abstract:
Powdery mildew is one of the main diseases of wheat in China. The powdery mildew resistance genes PmV and Pm21 are homologous genes from different Dasyprum villosum germplasm resources, which are used in breeding in the form of T6V#4S·6DL and T6V#2S·6AL translocation lines, respectively. Pm21 gene has been widely used in China, while PmV gene is rarely used. The main reason is that the exogenous fragment of T6V#4S·6DL translocation chromosome is too large, the transmission rate in the parent-offspring generation is low, and it is difficult to use in breeding. The creation of compensating small fragment translocation containing PmV is an important way to improve the transmission rate and reduce the redundancy of exogenous genes. In this study, we crossed the distal translocation line Dv6T25 carrying PmV with the proximal translocation line Dv6T36 carrying PmV. According to the principle of exogenous overlap region recombination, a compensatory intercalary translocation line Dv6-IT2 carrying PmV was screened in the F2 segregating population. Marker encryption analysis was performed using the reference genome sequence information of D. villosum. The results showed that the double-sided breakpoints of the translocation fragments were 35.1-36.3 Mb and 85.1-85.3 Mb, respectively, and the length of the exogenous translocation fragment was about 50 Mb. The F2 segregating population was constructed by crossing Dv6-IT2 with Yangmai 23. The marker results indicated that the ratio of resistance to susceptibility was consistent with the segregation ratio of 3∶1, indicating that the PmV gene could be transmitted normally in the new translocation. In this study, Dv6-IT2 was successfully created, which promoted the utilization of PmV gene in wheat powdery mildew resistance breeding.

参考文献/References:

[1]HUANG X Q, RDER M S. Molecular mapping of powdery mildew resistance genes in wheat:a review[J]. Euphytica,2004,137:203-223.
[2]GUO J, LIU C, ZHAI S N, et al. Molecular and physical mapping of Pm resistance genes-A review[J]. Agricultural Science & Technology,2017,18(6):965-970.
[3]HE H G, LIU R K, MA P T, et al. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796[J]. Theoretical and Applied Genetics,2021,134(1):53-62.
[4]SINGH R P, SINGH P K, RUTKOSKI J, et al. Disease impact on wheat yield potential and prospects of genetic control[J]. Annual Review Phytopathology,2016,54:303-322.
[5]BIE T D, ZHAO R H, ZHU S Y, et al. Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat[J]. Molecular Breeding,2015,35:189.
[6]CHEN P D, QI L L, ZHOU B, et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theoretical and Applied Genetics,1995,91(6/7):1125-1128.
[7]HE H G, ZHU S Y, ZHAO R H, et al. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease[J]. Molecular Plant,2018,11(6):879-882.
[8]WAN W T, ZHAO R H, CHEN T T, et al. Rapid development of wheat-Dasypyrum villosum compensating translocations resistant to powdery mildew using a triple marker strategy conducted on a large ph1b-induced population[J]. Theoretical and Applied Genetics,2023,136:148.
[9]ZHAO R H, LIU B L, JIANG Z N, et al. Comparative analysis of genetic effects of wheat Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL[J]. Plant Breeding,2019,138(5):503-512.
[10]ZHANG X, WANG H Y, SUN H J, et al. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement[J]. Molecular Plant,2023,16(2):432-451.
[11]WANG H Y, DAI K L, XIAO J, et al. Development of intron targeting (IT) markers specifc for chromosome arm 4VS of Haynaldia villosa by chromosome sorting and next-generation sequencing[J]. BMC Genomics,2017,18(1):167.
[12]吕国锋,别同德,王慧, 等. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/QTL的分子检测[J]. 作物学报,2021,47(12):2335-2347.
[13]LI Y, LI Q, LAN J, et al. Transfer of the ph1b gene of Chinese Spring into a common wheat cultivar with excellent traits[J]. Cereal Research Communications,2020,48:283-291.
[14]FAN C L, HAO M, JIA Z Y, et al. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye[J]. The Plant Journal,2021,105(6):1665-1676.
[15]TRKSI E, IVANIZS L, FARKAS A, et al. Transfer of the ph1b deletion chromosome 5B from Chinese Spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids[J]. Frontiers in Plant Science,2022,13:875676.
[16]SEARS E R,EVANS L T,PEACOCK W. Transfer of alien genetic material to wheat[M]. Cambridgeshire:Cambridge University Press, 1981.
[17]LUKASZEWSKI A. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination[J]. Crop Science, 2000,40(1):216-225.
[18]张蓝月,罗江陶,范超兰,等. 含Pm21基因的次级易位创制及鉴定[J]. 作物学报,2023,49(10):2603-2612.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(11):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(11):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]蒋正宁,赵仁慧,吴旭江,等.簇毛麦谷胱甘肽硫转移酶基因HvGSTF 的原核表达与酶活性鉴定[J].江苏农业学报,2016,(06):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
 JIANG Zheng-ning,ZHAO Ren-hui,WU Xu-jiang,et al.Prokaryotic expression of a glutathione S-transferase gene HvGSTF from Haynaldia villosa and the enzyme activity[J].,2016,(11):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
[4]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(11):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[5]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(11):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[6]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(11):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[7]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(11):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[8]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(11):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[9]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(11):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[10]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(11):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]

备注/Memo

备注/Memo:
收稿日期:2024-03-13 基金项目:国家自然科学基金项目(32072065、32201808);江苏省重点研发计划项目(BE2022346);扬州市“绿扬金凤计划”优秀博士项目作者简介:万文涛 (1991-),男,江苏连云港人,博士,助理研究员,主要从事小麦遗传育种研究。(E-mail)wentaowan2021@126.com 通讯作者:赵仁慧,(E-mail)zhaorh86@163.com
更新日期/Last Update: 2025-01-20