[1]曹琰梅,柯浩楠,商东耀,等.CO2浓度缓增对冬小麦田N2O排放的影响[J].江苏农业学报,2024,(05):855-864.[doi:doi:10.3969/j.issn.1000-4440.2024.05.010]
 CAO Yanmei,KE Haonan,SHANG Dongyao,et al.Effects of gradually elevated CO2 concentration on N2O emission from winter wheat field[J].,2024,(05):855-864.[doi:doi:10.3969/j.issn.1000-4440.2024.05.010]
点击复制

CO2浓度缓增对冬小麦田N2O排放的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
855-864
栏目:
耕作栽培·资源环境
出版日期:
2024-05-30

文章信息/Info

Title:
Effects of gradually elevated CO2 concentration on N2O emission from winter wheat field
作者:
曹琰梅1柯浩楠1商东耀2武熳秋1帅斯樑1胡正华1李琪1
(1.南京信息工程大学生态与应用气象学院,江苏南京210044;2.河南省气象科学研究所,中国气象局农业气象保障与应用技术重点实验室,河南郑州450003)
Author(s):
CAO Yanmei1KE Haonan1SHANG Dongyao2WU Manqiu1SHUAI Siliang1HU Zhenghua1LI Qi1
(1.School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.Henan Institute of Meteorological Science, Key Laboratory of Agrometeorological Support and Applied Technique, China Meteorological Administration, Zhengzhou 450003, China)
关键词:
冬小麦N2O排放量开顶式气室CO2浓度缓增
Keywords:
winter wheatN2O emissionsopen top chambergradually elevated CO2 concentration
分类号:
S512.1+1
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.010
摘要:
为研究CO2浓度缓增对冬小麦田N2O排放的影响,利用由开顶式气室(OTC)组成的CO2浓度自动调控平台,扬麦22号为供试材料开展田间试验。将大气CO2浓度作为对照(CK),设置CO2浓度缓增处理C80(CO2浓度缓慢增加80 μmol/mol)和C120(CO2浓度缓慢增加120 μmol/mol)。结果表明,CO2浓度缓增处理没有改变小麦田N2O排放通量的季节性变化特征。在2017-2018年冬小麦生长季,CK、C80处理土壤N2O累积排放量分别为(25.49±3.33) mg/m2、(26.83±3.21) mg/m2;2018-2019年冬小麦生长季,CK、C120处理土壤N2O累积排放量分别为(113.06±2.66) mg/m2、(121.20±9.28) mg/m2。在2017-2018年冬小麦生长季,CK、C80处理土壤-冬小麦系统N2O累积排放量分别为(25.99±1.39) mg/m2、(29.83±4.20) mg/m2。各生育期土壤N2O累积排放量与冬小麦地上部分生物量呈极显著正相关(P<0.01),土壤-冬小麦系统N2O累积排放量与冬小麦地上部分生物量呈极显著正相关(P<0.01)。
Abstract:
In order to study the effects of gradually elevated CO2 concentration on N2O emission from winter wheat field, a field experiment was carried out with Yangmai 22 as the test material by using an open-top chamber (OTC). Using atmospheric CO2 concentration as the control (CK), and two gradually elevated CO2 concentration treatments, C80(CO2 concentration increased by 80 μmol/mol) and C120(CO2 concentration increased by 120 μmol/mol), were set. The results showed that the seasonal variation of N2O emission flux in wheat field was not changed by the slow increase of CO2 concentration. During 2017-2018 winter wheat growing season, the cumulative N2O emissions from soil in CK and C80 treatment were (25.49±3.33) mg/m2 and (26.83±3.21) mg/m2, respectively. During 2018-2019 winter wheat growing season, the accumulative N2O emissions in CK and C120 treatment were (113.06±2.66) mg/m2 and (121.20±9.28) mg/m2, respectively. During 2017-2018 winter wheat growing season, the cumulative N2O emissions from the soil-winter wheat system in CK and C80 treatment were (25.99±1.39) mg/m2 and (29.83±4.20) mg/m2, respectively. The cumulative N2O emission from soil was positively correlated with the aboveground biomass of winter wheat (P<0.01), and the cumulative N2O emission from soil-winter wheat system was positively correlated with the aboveground biomass of winter wheat (P<0.01).

参考文献/References:

[1]WMO. WMO greenhouse gas bulletins:the state of greenhouse gases in the atmosphere based on global observations through 2022[R]. Geneva:WMO,2023.
[2]GENTHON C, BARNOLA J M, RAYNAUD D, et al. Vostok ice core:climatic response to CO2 and orbital forcing changes over the last climatic cycle[J]. Nature,1987,329:414-418.
[3]IPCC. Climate change 2021:the physical science basis. Contribution of working groups I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2021.
[4]国家统计局. 2021中国统计年鉴[M]. 北京:中国统计出版社,2022.
[5]王从,李舒清,刘树伟,等. 大气CO2浓度和温度升高对稻麦轮作生态系统N2O排放的影响[J]. 中国农业科学,2018,51(13):2535-2550.
[6]WELZMILLER J T, MATTHIAS A D, WHITE S, et al. Elevated carbon dioxide and irrigation effects on soil nitrogen gas exchange in irrigated sorghum[J]. Soil Science Society of America Journal,2008,72(2):393-401.
[7]SUN X, HAN X G, PING F, et al. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature[J]. Science of the Total Environment,2018,628/629:1009-1016.
[8]PEREIRA J, FIGUEIREDO N, GOUFO P, et al. Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields[J]. Atmospheric Environment,2013,80:464-471.
[9]党慧慧,刘超,伍翥嵘,等. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报,2021,30(7):1436-1446.
[10]商东耀. 不同CO2浓度升高水平对稻麦农田呼吸速率和N2O通量的影响[D]. 南京:南京信息工程大学,2020.
[11]WU Z R, WANG Y Y, LIU C, et al. Characteristics of soil N2O emission and N2O-producing microbial communities in paddy fields under elevated CO2 concentrations[J]. Environmental Pollution,2023,318:120872.
[12]侯爱新,陈冠雄,VANCLEEMPUT O. 不同种类氮肥对土壤释放N2O的影响[J]. 应用生态学报,1998(2):176-180.
[13]黄耀.地气系统碳氮交换——从实验到模型[M]. 北京:气象出版社,2003.
[14]INESON P, COWARD P A, HARTWIG U A. Soil gas fluxes of N2O,CH4 and CO2 beneath Lolium perenne under elevated CO2:The Swiss free air carbon dioxide enrichment experiment[J]. Plant and Soil,1998,198(1):89-95.
[15]NORBY R J, JOANNE L, REILLY C D, et al. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9689-9693.
[16]KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263-276.
[17]HUNGATE B A, DIJKSTRA P, ZHOUTING W, et al. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland[J]. New Phytologist,2013,200(3):753-766.
[18]BUTTERBACH B K, DANNENMANN M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate[J]. Current Opinion in Environmental Sustainability,2011,3(5):389-395.
[19]SUN J F, IA Z W, HE T X, et al. Ten years of elevated CO2 affects soil greenhouse gas fluxes in an open top chamber experiment[J]. Plant and Soil,2017,420(1/2):435-450.
[20]LIU S. Climatic role of terrestrial ecosystem under elevated CO2:a bottom-up greenhouse gases budget[J]. Ecology Letters,2018,21(7):1108-1118.
[21]LEIFELD J. Distribution of nitrous oxide emissions from managed organic soils under different land uses estimated by the peat C/N ratio to improve national GHG inventories[J]. Science of The Total Environment,2018,631/632:23-26.
[22]林伟宏,张福锁,白克智. 大气CO2浓度升高对植物根际微生态系统的影响[J]. 科学通报,1999(16):1690-1696.
[23]孙宝宝. 升温和大气CO2浓度升高下冬小麦季固碳减排措施及机理研究[D]. 南京:南京农业大学,2020.
[24]KUMAR A, PADHY S R, DAS R R, et al. Elucidating relationship between nitrous oxide emission and functional soil microbes from tropical lowland rice soil exposed to elevated CO2:a path modelling approach[J]. Agriculture Ecosystems & Environment,2021,308:107268.
[25]BHATTACHARYYA P, ROY K S, NEOGI S, et al. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.) [J]. Science of The Total Environment,2013,461:601-611.
[26]周超. 温度和CO2浓度升高对稻麦轮作系统CH4和N2O排放的影响:T-FACE平台观测研究[D]. 南京:南京农业大学,2013.
[27]WANG B, LI J L, WAN Y F, et al. Responses of yield, CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system[J]. European Journal of Agronomy,2018,96:60-69.
[28]CANTAREL A A M, BLOOR J M G, POMMIER T, et al. Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem[J]. Global Change Biology,2012,18(8):2520-2531.
[29]周伟平. 大气温度和二氧化碳浓度升高对稻田CH4和N2O排放及微生物的影响[D]. 北京:中国农业科学院,2017.
[30]DIJKSTRA F A, MORGAN J A, FOLLETT R F, et al. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland[J]. Global Change Biology,2013,19(6):1816-1826.
[31]徐仲均. 大气CO2浓度升高对稻-麦轮作农田温室气体排放影响的研究[D]. 北京:中国科学院研究生院(大气物理研究所),2005.
[32]王小涵. CO2浓度增加和温度升高对土壤N2O排放的影响[D]. 北京:中国农业科学院,2020.
[33]朱永官,王晓辉,杨小茹,等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学,2014,35(2):792-800.
[34]AGEHARA S, WARNCKE D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal,2005,69(6):1844-1855.
[35]朱兆良,文孝国土壤氮素[M]. 南京:江苏科学技术出版社,1992.
[36]于海洋,黄琼,王天宇,等. 大气CO2摩尔分数升高对高、低应答水稻稻田N2O排放的影响[J]. 环境科学,2021,42(8):3924-3930.
[37]胡正华,周迎平,崔海羚,等. 昼夜增温对大豆田土壤N2O排放的影响[J]. 环境科学,2013,34(8):2961-2967.
[38]张静,李虎,王立刚,等. 冬小麦/大葱轮作体系N2O排放特征及影响因素研究[J]. 农业环境科学学报,2012,31(8):1639-1646.
[39]封克,殷士学. 影响氧化亚氮形成与排放的土壤因素[J]. 土壤学进展,1995,23(6):35-42.
[40]熊浩,张保成,李建柱,等. 灌水量对冬小麦农田土壤N2O与CO2排放的影响[J]. 灌溉排水学报,2020,39(9):41-50.

相似文献/References:

[1]葛道阔,曹宏鑫,马晓群,等.基于作物生长模型的小麦旱涝敏感性分析与损失评估[J].江苏农业学报,2016,(06):1302.[doi:doi:10.3969/j.issn.1000-4440.2016.06.017]
 GE Dao-kuo,CAO Hong-xin,MA Xiao-qun,et al.Sensitivity analysis and damage assessment for wheat drought and waterlogged based on crop growth model[J].,2016,(05):1302.[doi:doi:10.3969/j.issn.1000-4440.2016.06.017]
[2]金正婷,李卫国,景元书.基于影像融合的冬小麦种植面积提取适宜尺度研究[J].江苏农业学报,2015,(06):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]
 JIN Zheng-ting,LI Wei-guo,JING Yuan-shu.Appropriate extraction scale of winter wheat planting area based on image fusion[J].,2015,(05):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]
[3]肇思迪,娄运生,庞渤,等.UV-B辐射增强下施硅对冬小麦光合特性和产量的影响[J].江苏农业学报,2017,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
 ZHAO Si-di,LOU Yun-sheng,PANG Bo,et al.Effects of silicate application on photosynthesis and yield in winter wheat under elevated UV-B radiation[J].,2017,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2017.05.012]
[4]葛道阔,曹宏鑫,杨余旺,等.基于WCSODS的小麦旱涝灾损区域化监测与精细化评估[J].江苏农业学报,2017,(05):1062.[doi:doi:10.3969/j.issn.1000-4440.2017.05.016]
 GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Regional monitoring and refined assessment for damage from wheat drought and waterlogging based on WCSODS[J].,2017,(05):1062.[doi:doi:10.3969/j.issn.1000-4440.2017.05.016]
[5]巫明焱,董光,税丽,等.基于Landsat 8影像的济宁市春季主要作物种植面积变化监测[J].江苏农业学报,2018,(03):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
 WU Ming-yan,DONG Guang,SHUI Li,et al.Change detection of main spring crops area in Jining based on Landsat 8 images[J].,2018,(05):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
[6]李卫国,顾晓鹤,葛广秀,等.县域冬小麦病害遥感监测信息系统研制[J].江苏农业学报,2019,(02):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
 LI Wei-guo,GU Xiao-he,GE Guang-xiu,et al.Development of remote sensing monitoring information system for county scale winter wheat diseases[J].,2019,(05):302.[doi:doi:10.3969/j.issn.1000-4440.2019.02.009]
[7]单捷,孙玲,王志明,等.GF-1影像遥感监测指标与冬小麦长势参数的关系[J].江苏农业学报,2019,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
 SHAN Jie,SUN Ling,WANG Zhi-ming,et al.Relationship between remote sensing monitoring indices and growth parameters in winter wheat based on GF-1 images[J].,2019,(05):1323.[doi:doi:10.3969/j.issn.1000-4440.2019.06.008]
[8]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[9]马美娟,陈小新,张云霞,等.分期播种冬小麦农田小气候特征及其生育状况分析[J].江苏农业学报,2021,(03):613.[doi:doi:10.3969/j.issn.1000-4440.2021.03.009]
 MA Mei-juan,CHEN Xiao-xin,ZHANG Yun-xia,et al.Analysis on field microclimate characteristics and growth of winter wheat under different sowing dates[J].,2021,(05):613.[doi:doi:10.3969/j.issn.1000-4440.2021.03.009]
[10]吴金芝,黄明,王志敏,等.干旱对冬小麦旗叶光合参数、产量和水分利用效率的影响[J].江苏农业学报,2021,(05):1108.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]
 WU Jin-zhi,HUANG Ming,WANG Zhi-min,et al.Effects of drought on flag leaf photosynthetic parameters, grain yield and water use efficiency in winter wheat[J].,2021,(05):1108.[doi:doi:10.3969/j.issn.1000-4440.2021.05.003]

备注/Memo

备注/Memo:
收稿日期:2023-05-08基金项目:国家自然科学基金项目(42071023、41775152)作者简介:曹琰梅(1999-),女,新疆巴州人,硕士研究生,研究方向为气候变化与地-气系统碳氮交换。(E-mail)1473939077@qq.com通讯作者:胡正华,(E-mail)zhhu@nuist.edu.cn;李琪,(E-mail)liqix123@sina.com
更新日期/Last Update: 2024-07-13