[1]刘丽,王培,王传之,等.基于SSR标记黄淮海地区夏大豆区域试验参试品系遗传多样性及粒形性状关联位点分析[J].江苏农业学报,2024,(05):785-795.[doi:doi:10.3969/j.issn.1000-4440.2024.05.003]
 LIU Li,WANG Pei,WANG Chuanzhi,et al.Analysis of genetic diversity and associated loci of grain shape traits in summer soybean regional test lines in Huang-Huai-Hai region based on SSR markers[J].,2024,(05):785-795.[doi:doi:10.3969/j.issn.1000-4440.2024.05.003]
点击复制

基于SSR标记黄淮海地区夏大豆区域试验参试品系遗传多样性及粒形性状关联位点分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
785-795
栏目:
遗传育种·生理生化
出版日期:
2024-05-30

文章信息/Info

Title:
Analysis of genetic diversity and associated loci of grain shape traits in summer soybean regional test lines in Huang-Huai-Hai region based on SSR markers
作者:
刘丽1王培12王传之3陈先连1宁可君1杨雪1舒英杰1惠雪1何庆元1
(1.安徽科技学院农学院,安徽滁州239000;2.宿州市农业科学院,安徽宿州234000;3.宿州学院生物与食品工程学院,安徽宿州234000)
Author(s):
LIU Li1WANG Pei12WANG Chuanzhi3CHEN Xianlian1NING Kejun1YANG Xue1SHU Yingjie1HUI Xue1HE Qingyuan1
(1.College of Agriculture, Anhui Science and Technology University, Chuzhou 239000, China;2.Suzhou Academy of Agricultural Sciences, Suzhou 234000, China;3.School of Biological and Food Engineering, Suzhou University, Suzhou 234000, China)
关键词:
大豆遗传多样性粒形关联位点
Keywords:
soybeangenetic diversitygrain shapeassociated loci
分类号:
S565.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.003
摘要:
为指导黄淮海地区夏大豆亲本选配和品种选育,通过在20条染色体上分布基本均匀的135对SSR标记对192份黄淮海地区参试夏大豆品系进行基因分型,分析品系的遗传分化和遗传多样性,测量品系的粒长、粒宽、粒长粒宽比,并进行粒形性状位点关联分析。结果表明,135对标记共检测出365个等位基因,平均每个标记检测到2.703 7个等位基因,变化范围为1~5个,多态信息含量为0~0.676 7,平均值为0.368 6。供试的192份大豆品系遗传多样性(多态性百分率=97.78%,等位基因数=2.703 7,有效等位基因数=1.956 1,Shannon’s信息指数=0.709 0)丰富,根据供试大豆品系来自区域分为5个自然居群,自然居群间遗传相似度(GI≥0.925 2)较高,遗传距离(GD≤0.077 8)小,表明黄淮海地区品种间交流频繁,遗传资源丰富。群体结构分析和连锁不平衡分析结果表明,192份参试夏大豆品系被划分为5个遗传亚群,且每个遗传亚群内存在不同程度的连锁不平衡。主坐标分析结果表明,第一主成分、第二主成分、第三主成分分别解释了总变异的7.69%、6.23%、5.57%。关联分析结果表明,P<0.05的显著水平下,共检测到88个与粒形性状关联的位点,其中有4个与粒形性状关联的位点在2种环境下被同时检测到,分别位于5号、16号、19号染色体上,其中位于19号染色体中的Sat_071位点表型贡献率最高。
Abstract:
To guide the parent selection and variety breeding of summer soybean in Huang-Huai-Hai region, the genotyping test of 192 summer soybean lines in Huang-Huai-Hai region was carried out by 135 pairs of SSR markers distributed evenly on 20 chromosomes. The genetic differentiation and genetic diversity of the lines were analyzed, the grain length, grain width and grain length-width ratio of the lines were measured, and the association analysis of grain shape trait loci was carried out. The results showed that 365 alleles were detected by 135 pairs of markers, and an average of 2.703 7 alleles were detected by one marker, ranging from one to five. The polymorphic information content was 0-0.676 7, with an average of 0.368 6. The genetic diversity of 192 soybean lines (percentage of polymorphism=97.78%, number of alleles=2.703 7, effective number of alleles=1.956 1, Shannon’s information index=0.709 0) was rich. According to the region of the tested soybean lines, they were divided into five natural populations. The genetic similarity (GI≥0.925 2) among natural populations was higher, and the genetic distance (GD≤0.077 8) was smaller, indicating that there were frequent exchanges among varieties and abundant genetic resources in Huang-Huai-Hai region. The results of population structure analysis and linkage disequilibrium analysis showed that 192 summer soybean lines were divided into five genetic subgroups, and there were different degrees of linkage disequilibrium in each genetic subgroup. The results of principal coordinate analysis showed that the first principal component, the second principal component and the third principal component explained 7.69%, 6.23% and 5.57% of the total variation, respectively. The results of association analysis showed that 88 loci associated with grain shape traits were detected at the significant level of P<0.05. Four loci associated with grain shape traits were detected in two environments at the same time, which were located on chromosomes 5, 16 and 19, respectively. Among them, the Sat_071 locus on chromosome 19 had the highest phenotypic contribution rate.

参考文献/References:

[1]金尚昆,朱玉萍,缪依琳,等. 黄淮海地区新育成大豆品系SSR标记多样性分析[J]. 大豆科学,2018,37(2):173-178.
[2]魏崃,寇坤,唐晓飞,等. 中国与引进国外大豆种质资源遗传多样性分析[J]. 大豆科学,2011,30(2):184-189,193.
[3]徐泽俊,齐玉军,邢兴华,等. 黄淮海大豆种质农艺与品质性状分析及综合评价[J]. 植物遗传资源学报,2022,23(2):468-480.
[4]李琼,常世豪,武婷婷,等. 120份大豆种质资源遗传多样性和亲缘关系分析[J]. 作物杂志,2021,203(4):51-58.
[5]李琼,耿臻,杨青春,等. 黄淮海50份大豆种质资源SSR遗传多样性分析[J]. 种子,2021,40(8):39-44,50.
[6]赵晶云,任小俊,任海红,等. 黄淮海大豆新品系主要农艺性状的遗传多样性分析[J]. 大豆科学,2022,41(3):266-273.
[7]LIU J L, XIE H M, LIN T, et al. Putative variants, genetic diversity and population structure among soybean cultivars bred at different ages in Huang-Huai-Hai region[J]. Scientific Reports,2022,12(1):2372.
[8]何鑫,马文娅,付汝洪,等. 2006-2017年国家黄淮海夏大豆品种区域试验参试品种(系)分析[J].中国油料作物学报,2019,41(4):537-549.
[9]SALAS P, OYARZO-LLAIPEN J C, WANG D, et al. Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.)[J]. Theoretical and Applied Genetics,2006,113:1459-1466.
[10]MOONGKANNA J, NAKASATHIEN S, NOVITZKY W, et al.SSR markers linking to seed traits and total oil content in soybean[J]. Thai Journal of Agricultural Science,2011,44(4):233-241.
[11]HU Z B, ZHANG H R, KAN G Z, et al. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.)[J]. Genetica,2013,141:247-254.
[12]梁慧珍,王树峰,余永亮,等. 6种大豆粒形性状的QTL定位[J]. 河南农业科学,2008,37(9):45-51.
[13]陈强,闫龙,邓莹莹,等. 大豆籽粒大小与形状性状的QTL定位[J]. 作物学报,2016,42(9):1309-1318.
[14]谷月,徐明月,张清秀,等. 大豆粒长、粒宽性状多年的遗传分析与互作位点定位[J]. 分子植物育种,2016,14(9):2425-2434.
[15]GIRIRAJ K, DONGHE X. A major and stable quantitative trait locus qSS2 for seed size and shape traits in a soybean RIL population[J]. Frontiers in Genetics,2021,12(1):646102.
[16]HINA A, CAO Y C, SONG S Y, et al. High-resolution mapping in two RIL populations refines major ‘QTL Hotspot’ regions for seed size and shape in soybean (Glycine max L.)[J]. International Journal Molecular Science,2020,21(3). https://doi.org/10.3390/ijms21031040.
[17]DOYLE J J. Isolation of plant DNA from fresh tissue[J]. Focus,1990,12:13-15.
[18]SONG Q J, MAREK L F, SHOEMAKER R C, et al. A new integrated genetic linkage map of the soybean[J]. Theoretical and Applied Genetics,2004,109:122-128.
[19]YEH F, YANG R, BOYLE T, et al. POPGENE, the user friendly shareware for population genetic analysis[J]. Molecular Biology and Biotechnology Centre,1997,10(1):34-55.
[20]LIU K, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics,2005,21:2128-2129.
[21]KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33:1870-1874.
[22]PRITCHARD J, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155:945-959.
[23]XAVIER V J O H. Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels[J]. Molecular Ecology Notes,2002,2(4):618-620.
[24]BRADBURY P J, ZHANG Z, KROON D E,et al. TASSEL: software for association mapping of complex traits in diverse samples[J]. Bioinformatics (Oxford, England),2007,23(19):2633-2635.
[25]杨春,郭灿,乔大河,等. 三都野生茶树表型性状和生化组分多样性分析[J]. 江苏农业科学,2023,51(8):111-119.
[26]吴河饶,任青艳,黄大玉,等. 榕江茶种质资源表型性状多样性及相关分析[J]. 南方农业学报,2023,54(1):56-67.
[27]苏秀丽,梁惠凌,刘宝玉,等. 基于ISSR分子标记的黄花倒水莲遗传多样性分析[J]. 江苏农业学报,2022,38(3):605-610.
[28]李艳伟,施俊生,汪宝根,等. 浙江地方瓠瓜种质资源的表型鉴定与遗传多样性[J]. 植物遗传资源学报,2020,21(5):1135-1147.
[29]朱振东,王化波,王晓鸣,等. 黑龙江省主要栽培大豆品种(系)对大豆疫霉根腐病的多抗性评价[J]. 植物遗传资源学报,2004,5(1):22-25.
[30]陈琪. 基于TRAP分子标记的中国黄淮海和南方大豆育成品种遗传多样性分析[D]. 南昌:南昌大学,2018.
[31]李河南,汪霞,李广军,等. 大豆粒形的主基因+多基因混合遗传[J]. 大豆科学,2009,28(1):16-20.
[32]XU Y, LI H N, LI G J, et al. Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)[J]. Theoretical and Applied Genetics,2011,122(3):581-594.
[33]牛远,谢芳腾,布素红,等. 大豆粒形性状QTL的精细定位[J].作物学报,2013,39(4):609-616.
[34]CHEN J Y, DING J J, LIU C Y, et al. Quantative trait loci of seed traits for soybean in multiple environments[J]. Genetics and molecular research: GMR,2014,13(2):4000-4012.

相似文献/References:

[1]金崇富,杨智青,陈长宽,等.盐城地方鸡MSTN 基因外显子1 多态性及其与生产性能的相关性分析[J].江苏农业学报,2016,(06):1372.[doi:doi:10.3969/j.issn.1000-4440.2016.06.027]
 JIN Chong-fu,YANG Zhi-qing,CHEN Chang-kuan,et al.Association of MSTN gene with growth and reproductive traits in Yancheng chicken[J].,2016,(05):1372.[doi:doi:10.3969/j.issn.1000-4440.2016.06.027]
[2]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(05):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[3]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(05):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[4]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
 ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[5]邵初阳,何晓兰,徐照龙,等.甜高粱种质资源多样性及主要农艺参数聚类分析[J].江苏农业学报,2015,(05):984.[doi:doi:10.3969/j.issn.1000-4440.2015.05.007]
 SHAO Chu-yang,HE Xiao-lan,XU Zhao-long,et al.Genetic diversity of sweet sorghum germplasm resources and clustering of major agronomical traits[J].,2015,(05):984.[doi:doi:10.3969/j.issn.1000-4440.2015.05.007]
[6]李大命,张彤晴,唐晟凯,等.太湖大银鱼(Protosalanx chinensis)细胞色素b基因序列多态性分析[J].江苏农业学报,2015,(04):840.[doi:10.3969/j.issn.1000-4440.2015.04.021]
 LI Da-ming,ZHANG Tong-qing,TANG Sheng-kai,et al.Genetic polymorphism of mitochondrial DNA cytochrome b (cytb) sequences of Protosalanx chinensis in Lake Taihu[J].,2015,(05):840.[doi:10.3969/j.issn.1000-4440.2015.04.021]
[7]倪先林,赵甘霖,刘天朋,等.SSR 分子标记在糯高粱种质资源遗传多样性分析中的应用[J].江苏农业学报,2015,(01):16.[doi:10.3969/j.issn.1000-4440.2015.01.003]
 NI Xian-lin,ZHAO Gan-lin,LIU Tian-peng,et al.Genetic diversity analysis of glutinous sorghum germplasm by simple sequence repeat[J].,2015,(05):16.[doi:10.3969/j.issn.1000-4440.2015.01.003]
[8]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(05):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[9]张安世,司清亮,齐秀娟,等.猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建[J].江苏农业学报,2018,(01):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]
 ZHANG An-shi,SI Qing-liang,QI Xiu-juan,et al.Genetic diversity and fingerprints of Actinidia germplasm resource based on SRAP markers[J].,2018,(05):138.[doi:doi:10.3969/j.issn.1000-4440.2018.01.020]
[10]董玲霞,苏一钧,戴习彬,等.基于SSR分子标记的甘薯地上部专用品种遗传多样性分析[J].江苏农业学报,2018,(04):741.[doi:doi:10.3969/j.issn.1000-4440.2018.04.004]
 DONG Ling-xia,SU Yi-jun,DAI Xi-bin,et al.Genetic diversity analysis of overground sweetpotato special-purpose varieties based on simple sequence repeats(SSR) markers[J].,2018,(05):741.[doi:doi:10.3969/j.issn.1000-4440.2018.04.004]

备注/Memo

备注/Memo:
收稿日期:2023-10-17基金项目:安徽省教育厅重大项目(2023AH040279);安徽省重点研发项目(202104a06020029);国家自然科学基金项目(32101704);四川省科技计划项目(2022SZYZF08);四川省科技计划重点研发项目(2021YFYZ0018);四川豆类杂粮创新团队春大豆技术研究岗位项目(SCCXTD-2020-20);安徽省大学生创新课题(202210879102、S202210879310)作者简介:刘丽(1998-),女,江苏扬州人,硕士研究生,研究方向为大豆遗传育种。(E-mail)2675727557@qq.com。王培为共同第一作者。通讯作者:何庆元,(E-mail)heqingyuan1@163.com
更新日期/Last Update: 2024-07-13