[1]晁岳恩,王沙沙,汪庆昌,等.基于转录组比较的燕麦类似贮藏蛋白在小麦面团强度性状中的作用[J].江苏农业学报,2024,(05):777-784.[doi:doi:10.3969/j.issn.1000-4440.2024.05.002]
 CHAO Yueen,WANG Shasha,WANG Qingchang,et al.Effect of avenin-like proteins on wheat dough strength traits based on comparative transcriptome[J].,2024,(05):777-784.[doi:doi:10.3969/j.issn.1000-4440.2024.05.002]
点击复制

基于转录组比较的燕麦类似贮藏蛋白在小麦面团强度性状中的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年05期
页码:
777-784
栏目:
遗传育种·生理生化
出版日期:
2024-05-30

文章信息/Info

Title:
Effect of avenin-like proteins on wheat dough strength traits based on comparative transcriptome
作者:
晁岳恩王沙沙汪庆昌黄超李巍时锋
(河南省农业科学院小麦研究所,河南郑州450002)
Author(s):
CHAO YueenWANG ShashaWANG QingchangHUANG ChaoLI WeiSHI Feng
(Institute of Wheat Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China)
关键词:
小麦燕麦类似贮藏蛋白面团强度自由巯基转录组
Keywords:
wheatavenin-like proteinsdough strengthfree sulfhydryl groupstranscriptome
分类号:
S512.1;S331
DOI:
doi:10.3969/j.issn.1000-4440.2024.05.002
摘要:
面团强度是影响小麦加工应用的主要品质指标之一。为鉴定与面团强度性状相关的贮藏蛋白编码基因,本研究以高相对分子量麦谷蛋白亚基组合完全相同的2个品种(郑麦366:高面团强度品种;郑麦366杂交后代品种郑麦369:低面团强度品种)为研究材料,比较开花后14 d、21 d、28 d的贮藏蛋白编码基因表达差异,评估基因编码蛋白的面团强度贡献值,以及面粉的巯基含量差异等。结果表明,在25个显著差异表达的贮藏蛋白编码基因中,无高相对分子量麦谷蛋白亚基、低相对分子量麦谷蛋白亚基基因;其中郑麦366显著上调表达基因14个,包含8个燕麦类似蛋白编码基因和6个醇溶蛋白编码基因;显著下调表达基因11个,包括10个醇溶蛋白编码基因和1个燕麦类似蛋白编码基因。贮藏蛋白面团强度评价模型的评分结果显示,差异表达基因编码的燕麦类似贮藏蛋白对面团强度性状的贡献值不低于优质麦谷蛋白亚基,暗示燕麦类似贮藏蛋白可能也是影响面团强度性状的重要蛋白质类型。
Abstract:
Wheat dough strength is one of the important quality indicators that can affect the processing and application of wheat. To identify genes that coding grain storage proteins (GSPs) related to dough strength quality, two wheat cultivars (cultivar Zhengmai 366, with high dough strength; cultivar Zhengmai 369, with low dough strength, which was filial generation of Zhengmai 366) with the same combination of high molecular weight-glutenin subunits (HMW-GSs) were used as the test materials in this study. Expression differences of storage proteins encoding genes were compared 14 d, 21 d and 28 d after flowering. The contribution value of gene encoding proteins to dough strength and sulfhydryl content difference of flour were evaluated. The results showed that, in 25 significantly differentially expressed GSP encoding genes, there weren’t any high or low molecular weight-glutenin subunits, and there were 14 genes of Zhengmai 366 significantly up-regulated (including eight avenin-like encoding genes and six gliadin coding genes), 11 genes were significantly down-regulated (including ten gliadin coding genes and one avenin-like encoding gene). The prediction results of evaluation model for dough strength of storage proteins indicated that, the avenin-like proteins encoded by differentially expressed genes may contribute more to dough strength than the elite glutenin subunit. The results suggest that maybe avenin-like proteins are also important protein types that can influence dough strength.

参考文献/References:

[1]ANJUM F M, KHAN M R, DIN A, et al. Wheat gluten: high molecular weight glutenin subunits-Structure, genetics, andrelation to dough elasticity[J]. Journal of Food Science,2007,72(3):56-63.
[2]STEIN I S, SEARS R G, HOSENEY R C, et al. Chromosomal location of genes influencing grain protein concentration and mixogram properties in Plainsman-V winter wheat[J]. Crop Science,1992,32(3):573-580.
[3]DELCOUR J A, JOYE I J, PAREYT B, et al. Wheat gluten functionality as a quality determinant in cereal-based food products[J]. Annual Review of Food Science and Technology,2012,3(1):469-472.
[4]ZHANG Y J, HU M Y, LIU Q, et al. Deletion of high-molecular-weight glutenin subunits in wheat significantly reduced dough strength and bread-baking quality[J]. BMC Plant Biology,2018,18:1-12.
[5]CHEN Q, ZHANG W J, GAO W J, et al. High molecular weight glutenin subunits 1Bx7 and 1By9 encoded by Glu-B1 locus affect wheat dough properties and sponge cake quality[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11796-11804.
[6]CHEN H Q, LI S J, LIU Y W, et al. Effects of 1Dy12 subunit silencing on seed storage protein accumulation and flour-processing quality in a common wheat somatic variation line[J]. Food Chemistry,2021,335(15):127663.
[7]JIANG P H, XUE J S, DUAN L N, et al. Effects of high-molecular-weight glutenin subunit combination in common wheat on the quality of crumb structure[J]. Journal of The Science of Food and Agriculture,2019,99(4):1501-1508.
[8]ANDERSON O D, HSIA C C, ADALSTEINS A E, et al. Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes[J]. Theoretical and Applied Genetics,2001,103:307-315.
[9]KAN Y C, WAN Y F, BEAUDOIN F, et al. Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat[J]. Journal of Cereal Science,2006,44(1):75-85.
[10]BANACH J K, MAJEWSKA K, ZUK-GOASZEWSKA K. Effect of cultivation system on quality changes in durum wheat grain and flour produced in North-Eastern Europe[J]. PLoS One,2021,16(1):e0236617.
[11]晁岳恩,李文旭,王沙沙,等. 不同面团强度小麦品种差异表达贮藏蛋白基因分析[J]. 河南农业科学,2022,51(10):17-24.
[12]晁岳恩. 小麦面粉蛋白质量评价模型构建及蛋白质量再评价[J]. 麦类作物学报,2022,42(8):980-987.
[13]HETTY C V D B, ANTOINE H P A, MARINUS J M S, et al. A modified extraction protocol enables detection and quantification of celiac disease-related gluten proteins from wheat[J]. Journal of Chromatography B,2009,877(10):975-982.
[14]LI H Q, SUYAMA A, MITANI-UENO N, et al. A low level of NaCl stimulates plant growth by improving carbon and sulfur assimilation in Arabidopsis thaliana[J]. Plants,2021,10(10):2138.
[15]WANG N, MA S, LI L, et al. Aggregation characteristics of protein during wheat flour maturation[J]. Journal of Agricultural and Food Chemistry,2019,99(2):719-725.
[16]LI D, JIN H B, ZHANG K P, et al. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat[J]. The Plant Journal,2018,95(3):414-426.
[17]AGHAGHOLIZADEH R, KADIVAR M, NAZARI M, et al. Capability of solvent retention capacity to quality of flat bread in three wheat cultivars[J]. Journal of Food Science and Technology,2019,56(2):775-782.
[18]WANG D W, ZHANG K P, DONG L L, et al. Molecular genetic and genomic analysis of wheat milling and end-use traits in China:progress and perspectives[J]. The Crop Journal,2018,6(1):68-81.
[19]SUN J, CHEN M, HOU X X, et al. Effect of phosphate salts on the gluten network structure and quality of wheat noodles[J]. Food Chemistry,2021(358):129895.
[20]ZHANG L L, GUAN E Q, YANGY L, et al. Impact of wheat globulin addition on dough rheological properties and quality of cooked noodles[J]. Food Chemistry,2021,362:130170.
[21]CHEN X Y, CAO X Y, ZHANG Y J, et al. Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat[J]. Scientific Reports,2016,6:30692.
[22]ZHANG Y J, HU X, JUHASZ A, et al. Characterising avenin-like proteins (ALPs) from albumin/globulin fraction of wheat grains by RP-HPLC, SDS-PAGE, and MS/MS peptides sequencing[J]. BMC Plant Biology,2020,20:45.
[23]MA F G, LI M, LI T T, et al. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers[J]. PLoS One,2013(8):e66758.
[24]MA F G, LI M, YU L L, et al. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties[J]. Molecular Breeding,2013,32:853-865.
[25]WANG Y Q, LI M, GUAN Y B,et al. Effects of an additional cysteine residue of avenin-like b protein by site-directed mutagenesis on dough properties in wheat (Triticuma estivum L.)[J]. Journal of Agricultural and Food Chemistry,2019,67:8559-8572.
[26]DEVOS K M, DUBCOVSKY J, DVORK J, et al. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination[J]. Theoretical and Applied Genetics,1995,91(2):282-288.
[27]DVORAK J, WANG L, ZHU T T, et al. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B[J]. Theoretical and Applied Genetics,2018,131:2451-2462.
[28]FERRANTE P, MASCI S, D′OVIDIO R, et al. A proteomic approach to verify in vivo expression of a novel gamma-gliadin containing an extra cysteine residue[J]. Proteomics,2010,6(6):1908-1914.
[29]VENSEL W H, TANAKA C K, ALTENBACH S B. Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry[J], Proteome Science,2014,12(1):8.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(05):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(05):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(05):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(05):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(05):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(05):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(05):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2023-05-23基金项目:河南省农业科学院自主创新项目(2023ZC004);河南省科技攻关项目(232102110254)作者简介:晁岳恩(1974-),河南濮阳人,博士,副研究员,主要从事小麦遗传育种工作。(E-mail)nkychaoyueen@163.com
更新日期/Last Update: 2024-07-13