参考文献/References:
[1]余利,蔡伊,申卫丹,等. 基于文献计量分析的国内地被植物研究进展[J/OL]. 贵州师范大学学报(自然科学版),2023:1-8
[2023-10-12].DOI: http://kns.cnki.net/kcms/detail/52.5006.N.20230130.1356.014.html.
[2]陈亚宁,李玉朋,李稚,等. 全球气候变化对干旱区影响分析[J]. 地球科学进展,2022,37(2):111-119.
[3]CHEN H P, SUN J Q. Changes in climate extreme events in China associated with warming[J]. International Journal of Climatology,2015,35(10):2735-2751.
[4]陈清心. CMIP6预估21世纪中国区域不同类型干旱的变化[D]. 南京:南京信息工程大学,2023.
[5]OLDROYD G E D, LEYSER O A. Plant’s diet, surviving in a variable nutrient environment[J]. Science,2020,368(6486):eaba0196.
[6]张玉,冷海楠,曹宏杰, 等.干旱胁迫对植物的影响研究[J]. 黑龙江科学,2022,13(14):22-24,47.
[7]LAKSHMANAN V, RAY P, CRAVEN K D. Toward a resilient, functional microbiome: drought tolerance-alleviating microbes for sustainable agriculture[J]. Plant Stress Tolerance: Methods and Protocols,2017,1631:69-84.
[8]FAN D, SUBRAMANIAN S, SMITH D L. Plant endophytes promote growth and alleviate salt stress in Arabidopsis thaliana[J]. Scientific Reports,2020,10(1):12740.
[9]BERG G, RYBAKOVA D, GRUBE M, et al. The plant microbiome explored: implications for experimental botany[J]. Journal of Experimental Botany,2016,67(4):995-1002.
[10]RODRIGUEZ R J, WOODWARD C J, REDMAN R S. Fungal influence on plant tolerance to stress[J]. Biocomplexity of Plant Fungal Interactions,2012:155-163.DOI:10.1002/9781118314364.ch7.
[11]马雪晴,冀傲冉,郑娇莉,等. 植物根际促生菌促生机制及其应用研究进展[J/OL]. 中国农业科技导报, 2024:1-11
[2023-10-12].DOI:10.13304/j.nykjdb.2023.0654.
[12]李琬,刘淼,张必弦,等. 植物根际促生菌的研究进展及其应用现状[J].中国农学通报,2014,30(24):1-5.
[13]VAHABINIA F, PIRDASHTI H, BAKHSHANDEH E. Environmental factors’ effect on seed germination and seedling growth of chicory (Cichorium intybus L.) as an important medicinal plant[J]. Acta Physiologiae Plantarum,2019,41(2):27.
[14]文竹梅,冯玉超,刘青青,等. 3种草本植物种子萌发及幼苗生长生理对干旱胁迫的响应[J]. 福建农林大学学报(自然科学版),2022,51(4):562-569.
[15]BAKHSHANDEH E, GHOLAMHOSSEINI M, YAGHOUBIAN Y, et al. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress[J]. Plant Growth Regulation,2020,90(1):123-136.
[16]郑鹏. ACC脱氨酶根际促生菌的分离鉴定及其对干旱胁迫下玉米甜菜碱代谢的影响[D]. 杨凌:西北农林科技大学,2015:56.
[17]陈可,胡南,陈威,等. 两种植物根际促生菌对博落回抗干旱及富集铀性能的增强作用研究[J]. 环境科学学报,2018,38(10):4142-4149.
[18]BAE H, SICHER R C, KIM M S. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao[J]. Journal of Experimental Botany,2009,60(11):3279-3295.
[19]谌端玉. 干旱胁迫下接种ERM真菌对桃叶杜鹃幼苗光合特性的影响[D]. 贵阳:贵州大学,2016.
[20]CREUS C M, SUELDO R J, BARASSI C A. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field[J]. Canadian Journal of Botany,2004,82(2):273-281.
[21]XIA C, CHRISTENSEN M J, ZHANG X, et al. Effect of Epichlo gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit[J]. Plant and Soil,2018,424(1):555-571.
[22]ARUN K D, SABARINATHAN K G, GOMATHY M, et al. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria[J]. Journal of Basic Microbiology, 2020,60(9):768-786.
[23]LIN Y, WATTS D B, KLOEPPER J W, et al. Influence of plant growth-promoting rhizobacteria on corn growth under drought stress[J]. Communications in Soil Science and Plant Analysis,2020,51(2):250-264.
[24]DUBEY A, SAIYAM D, KUMAR A, et al. Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress[J]. International Journal of Environmental Research and Public Health,2021,18(3):931.
[25]张超.干旱下植物根际促生菌对苹果实生苗生理特性和磷吸收利用的影响[D]. 杨凌:西北农林科技大学,2017.
[26]ARMADA E, ROLDN A, AZCON R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil[J]. Microbial Ecology,2014,267(2):410-420.
[27]NISHIYAMA R, WATANABE Y, FUJITA Y, et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis[J]. Plant Cell,2011,23(6):2169-2183.
[28]CUI X, HE W, CHRISTENSEN M J, et al. Abscisic acid may play a critical role in the moderating effect of Epichlo endophyte on Achnatherum inebrians under drought stress[J]. Journal of Fungi,2022,8(11):1140.
[29]JAYAKUMAR A, KRISHNA A, NAIR I C, et al. Drought-tolerant and plant growth-promoting endophytic Staphylococcus sp. having synergistic effect with silicate supplementation[J]. Archives of Microbiology,2020,202(7):1899-1906.DOI:https://doi.org/10.3390/jof8111140.
[30]CHANDRA P, TRIPATHI P, CHANDRA A. Isolation and molecular characterization of plant growth-promoting Bacillus spp. and their impact on sugarcane (Saccharum spp. hybrids) growth and tolerance towards drought stress[J]. Acta Physiologiae Plantarum,2018,40(11):199.
[31]DEFEZ R, ANDREOZZI A, DICKINSON M, et al. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain[J]. Frontiers in Microbiology,2017,8:2466.
[32]ANSARI R A, RIZVI R, SUMBUL A, et al. PGPR: current vogue in sustainable crop production[J]. Probiotics and Plant Health,2017,21:455-472.
[33]NETT R S, BENDER K S, PETERS R J. Production of the plant hormone gibberellin by rhizobia increases host legume nodule size[J]. The ISME Journal,2022,16(7):1809-1817.
[34]NETT R S, CONTRERAS T, PETERS R J. Characterization of CYP115 as a gibberellin 3-oxidase indicates that certain rhizobia can produce bioactive gibberellin A4[J]. ACS Chemical Biology,2017,12(4):912-917.
[35]ASHRY N M, ALAIDAROOS B A, MOHAMED S A, et al. Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR)[J]. Saudi Journal of Biological Sciences,2022,29(3):1760-1769.
[36]CHIEB M, GACHOMO E W. The role of plant growth promoting rhizobacteria in plant drought stress responses[J]. BMC Plant Biology,2023,23(1):407.
[37]SINGH A K, KUMAR A, SINGH P K. PGPR amelioration in austainable agriculture[M]. Cambridge:Woodhead Publishing,2019:129-157.
[38]LIN Y X, ZHANG H, LI P R, et al. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress[J]. BMC Plant Biology,2022,22(1):475.
[39]RAJINI S B, NANDHINI M, UDAYASHANKAR A C, et al. plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor[J]. Plant Pathology,2020,69(4):642-654.
[40]DIEN D C, MOCHIZUKI T, YAMAKAWA T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties[J]. Plant Production Science, 2019,22(4):530-545.
[41]NASEEM H, BANO A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize[J]. Journal of Plant Interactions,2014,9(1):689-701.
[42]GROVER M, MADHUBALA R, ALI S Z, et al. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions[J]. Journal of Basic Microbiology,2014,54(9):951-961.
[43]GURURANI M A, UPADHYAYA C P, BASKAR V, et al. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance[J]. Plant Growth Regul,2013,32:245-258.
[44]SARMA R K, SAIKIA R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21[J]. Plant Soil,2014,377:111-126.
[45]COHEN A C, BOTTINI R, PONTIN M, et al. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels[J]. Physiologia Plantarum,2015,153:79-90.
[46]KOUR D, RANA K L, KAUR T, et al. Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolor L.) by drought-adaptive and phosphorus-solubilizing microbes[J]. Biocatalysis and Agricultural Biotechnology,2020,23:101501.
[47]王艺,丁贵杰. 干旱胁迫下外生菌根真菌对马尾松幼苗生长和微量元素吸收的影响[J]. 浙江农林大学学报,2012,29(6):822-828.
[48]CHANDRASEKARAN M, PARAMASIVAN M. Arbuscular mycorrhizal fungi and antioxidant enzymes in ameliorating drought stress: a meta-analysis[J]. Plant and Soil,2022,480(1):295-303.
[49]徐雪东,张超,秦成,等. 干旱下接种根际促生细菌对苹果实生苗光合和生理生态特性的影响[J]. 应用生态学报,2019,30(10):3501-3508.
[50]柳旭. 植物根际促生细菌与种子引发技术对老化种子萌发和幼苗生长的影响[D]. 杨凌:西北农林科技大学,2018:57.
[51]HE F, SHENG M, TANG M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Frontiers in Plant Science,2017,8:183.
[52]VOLPE V, CHITARRA W, CASCONE P, et al. The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato[J]. Frontiers in Plant Science,2018,9:1480.
[53]王欢,高曹晨乐,张鑫雨. 植物根际促生菌提高植物抗旱能力的研究分析[J]. 中国战略新兴产业,2018(40):148.
[54]YAGHOUBIAN Y, GOLTAPEH E M, PIRDASHTI H, et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3:239-245.
[55]MARTINS S J, ROCHA G A, DE MELO H C, et al. Plant-associated bacteria mitigate drought stress in soybean[J]. Environmental Science and Pollution Research,2018,25(14):13676-13686.
[56]PEREYRA M A, GARCA P, COLABELLI M N, et al. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile[J]. Applied Soil Ecology,2012,53:94-97.
[57]刘丹. 植物促生菌Klebsiella pneumoniae Sneb YK诱导大豆抗逆性研究[D]. 沈阳:沈阳农业大学,2018:129.
[58]HARTMAN K, TRINGE S G. Interactions between plants and soil shaping the root microbiome under abiotic stress[J]. The Biochemical Journal,2019,476:2705-2724.
[59]VARSHIKAR D, TAN F C. Salt and drought stress affects electron transport chain genes in rice[J]. International Journal of Advanced and Applied Sciences,2017,4:106-110.
[60]吕婧妤,徐超,刘昱君,等. 基于模拟优化模型的干旱风沙草原区水-粮食-能源关系[J]. 排灌机械工程学报,2023,41(3):296-304.
[61]徐存东,胡小萌,刘子金,等. 干旱区人工绿洲水土资源承载状态演变分析[J]. 排灌机械工程学报,2023,41(1):62-69.
[62]吴克倩,肖让,赵文举,等. 降解地膜对河西干旱区土壤水热及制种玉米产量的影响[J]. 排灌机械工程学报,2022,40(9):952-958.
相似文献/References:
[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):5.
XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2005,(04):5.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):5.
XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2006,(04):5.
[3]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(04):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[4]肇莹,杨镇,杨涛,等.植物内生菌醇提取物对草坪草抗旱性的影响[J].江苏农业学报,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
ZHAO Ying,YANG Zhen,YANG Tao,et al.Influence of plant endophyte extract on turfgrass drought tolerance[J].,2015,(04):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
[5]孟力力,张俊,闻婧.干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J].江苏农业学报,2015,(01):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
MENG Li-li,ZHANG Jun,WEN Jing.Changes of photosynthetic characteristics of Coleus blumei and mesophyll cell ultrastructure in response to drought stress[J].,2015,(04):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
[6]张丽丽,徐碧玉,刘菊华,等.MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制[J].江苏农业学报,2018,(03):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway[J].,2018,(04):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
[7]麻云霞,李钢铁,张宏武,等.外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,(05):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
MA Yun-xia,LI Gang-tie,ZHANG Hong-wu,et al.Effects of exogenous silicon on growth, physiological and biochemical characteristics of zizyphus jujube plant[J].,2018,(04):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
[8]葛道阔,曹宏鑫,杨余旺,等.干旱胁迫下油菜栽培模拟优化决策系统(Rape-CSODS)的订正及其检验[J].江苏农业学报,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Modification and verification of Rape-CSODS under drought stress[J].,2019,(04):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
[9]陈丽,焦健,朱绍丹,等.油橄榄对牧草间作与干旱胁迫交互作用的根系生理响应[J].江苏农业学报,2019,(06):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Root physiological response of olive to the interaction of pasture intercropping and drought stress[J].,2019,(04):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
[10]陈丽,焦健,朱绍丹,等.牧草间作对干旱胁迫下油橄榄根系形态特征的影响[J].江苏农业学报,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Effects of pasture intercropping on root morphological characteristics of olive under drought stress[J].,2020,(04):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]