参考文献/References:
[1]IARC. Agents classified by the IARC monographs[EB/OL].
[2023-12-01]. https://monographs.iarc.who.int/agents-classified-by-the-iarc/.
[2]ZHANG H, REYNOLDS M. Cadmium exposure in living organisms:a short review[J]. Science of the Total Environment,2019,678:761-767.
[3]GUNADASA S G, TIGHE M K, WILSON S C. Arsenic and cadmium and associated risk in farm soils of the dry zone Sri Lanka where chronic Kidney disease of unknown etiology (CKDu) is Endemic[J]. Exposure and Health,2021,14(3):543-556.
[4]JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology,2014,7(2):60-72.
[5]CLEMENS S. Safer food through plant science:reducing toxic element accumulation in crops[J]. Journal of Experimental Botany,2019,70(20):5537-5557.
[6]ZHAO D, WANG P, ZHAO F J. Dietary cadmium exposure, risks to human health and mitigation strategies[J]. Critical Reviews in Environmental Science and Technology,2023,53(8):939-963.
[7]环境保护部,国土资源部. 全国土壤污染状况调查公报[R]. 国土资源通讯,2014(8):26-29.
[8]ZHOU J, GAO M, CUI H B, et al. Influence of silicon and selenium and contribution of the node to cadmium allocation and toxicity in rice[J]. Acs Agricultural Science & Technology,2021,1(5):550-557.
[9]国家统计局. 2023中国统计年鉴[M]. 北京:中国统计出版社,2023.
[10]YANG J L, CANG L, WANG X, et al. Field survey study on the difference in Cd accumulation capacity of rice and wheat in rice-wheat rotation area[J]. Journal of Soils and Sediments,2020,20(4):2082-2092.
[11]王怡雯,芮玉奎,李中阳,等. 冬小麦吸收重金属特征及与影响因素的定量关系[J]. 环境科学,2020,41(3):1482-1490.
[12]LI X X, ZHOU L X, ZHANG C, et al. Spatial distribution and risk assessment of fluorine and cadmium in rice, corn, and wheat grains in most karst regions of Guizhou province, China[J]. Frontiers in Nutrition,2022,9:1014147.
[13]肖冰,薛培英,韦亮,等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学,2020,41(6):2869-2877.
[14]智研咨询. 2023年中国牡蛎产业供需及进出口现状:养殖面积和产量大幅度增长[EB/OL].
[2023-11-27]. https://www.chyxx.com/industry/1165076.html.
[15]刘超,陈素华,杨周驰昊,等. 基于牡蛎壳制备水下超疏油海绵及其油水分离应用[J]. 南昌航空大学学报(自然科学版),2021,35(3):77-85.
[16]CHUNG K H, JUNG S C, PARK B G. Eco-friendly deicer prepared from waste oyster shells and its deicing properties with metal corrosion[J]. Environmental Technology,2021,42(21):3360-3368.
[17]HA S, LEE J W, CHOI S H, et al. Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling[J]. Journal of Material Cycles and Waste Management,2019,21(5):1075-1084.
[18]SILVA T H, MESQUITA-GUIMARES J, HENRIQUES B, et al. The potential use of oyster shell waste in new value-added by-product[J]. Resources,2019,8(1):1-15.
[19]代银平,王雪莹,叶炜宗,等. 贝壳废弃物的资源化利用研究[J]. 资源开发与市场,2017,33(2):203-208.
[20]LEE C H, LEE D K, ALI M A, et al. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials[J]. Waste Management,2008,28(12):2702-2708.
[21]HONG C O, KIM S Y, GUTIERREZ J, et al. Comparison of oyster shell and calcium hydroxide as liming materials for immobilizing cadmium in upland soil[J]. Biology and Fertility of Soils,2010,46(5):491-498.
[22]ZENG T, GUO J, LI Y, et al. Oyster shell amendment reduces cadmium and lead availability and uptake by rice in contaminated paddy soil[J]. Environmental Science and Pollution Research,2022,29(29):44582-44596.
[23]TEFERA W, SEIFU W, TIAN S. Coconut shell-derived biochar and oyster shell powder alter rhizosphere soil biochemical properties and Cd uptake of rice (Oryza sativa L.)[J]. International Journal of Environmental Science and Technology,2022,20(10):10835-10846.
[24]YANG H, CHEN X W, XIAO C X, et al. Application of oyster shell powder reduces cadmium accumulation by inhibiting the expression of genes responsible for cadmium uptake and translocation in rice[J]. Environ Sci Pollut Res,2023,30(41):93519-93530.
[25]姚澄,周天宇,易超,等. 施用锰肥对根际土壤锰有效性及小麦镉吸收转运的影响[J]. 农业环境科学学报,2022,41(9):1955-1965.
[26]肖亚涛. 冬小麦籽粒镉低积累品种的生产特性及其低积累机制研究[D]. 北京:中国农业科学院,2016.
[27]冯亚娟,李廷轩,蒲勇,等. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报,2022,48(7):1761-1770.
[28]罗华汉,柳开楼,余跑兰,等. 牡蛎壳粉对水稻产量和土壤重金属钝化的影响[J]. 中国稻米,2016,22(3):30-33.
[29]严建辉. 牡蛎壳土壤调理剂对黄泥田花生产量及土壤酸化改良的影响[J]. 农学学报,2019,9(11):17-20.
[30]林荣晓,苏永昌,刘淑集,等. 牡蛎壳在水质改良中的应用[J]. 福建水产,2012,34(5):428-431.
[31]王淇. 牡蛎壳废弃物综合利用探讨[J]. 科技资讯,2018,16(21):107-108.
[32]HUANG H Y, LIU H K, ZHANG R F, et al. Effect of slow-released biomass alkaline amendments oyster shell on microecology in acidic heavy metal contaminated paddy soils[J]. Journal of Environmental Management,2022,319:115683.
[33]刘顺梅. 牡蛎壳土壤调理剂对北沙参生理生化影响的研究[D]. 青岛:中国海洋大学,2004.
[34]RUAN Y L. Sucrose metabolism:gateway to diverse carbon use and sugar signaling[J]. Annu Rev Plant Biol,2014,65(1):33-67.
[35]曾涛,郭京霞,王果. 牡蛎壳粉对水稻吸收累积镉的影响[C]//中国土壤学会. 2019年中国土壤学会土壤环境专业委员会、土壤化学专业委员会联合学术研讨会论文摘要集. 北京:中国土壤学会,2019:23.
[36]ZHENG X K, ZOU M Y, ZHANG B W, et al. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal[J]. Ecotoxicology and Environmental Safety,2022,229:113073.
[37]TANAKA K, FUJIMAKI S, FUJIWARA T, et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition,2007,53(1):72-77.
[38]FENG X M, HAN L, CHAO D Y, et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice[J]. Journal of Hazardous Materials,2017,331(5):246-256.
[39]URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences,2011,108(52):20959-20964.
[40]CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annu Rev Plant Biol,2016,67(1):489-512.
[41]张世杰,孙洪欣,薛培英,等. 叶面施硅时期对冬小麦镉铅砷累积的阻控效应研究[J]. 河北农业大学学报,2018,41(3):1-6, 36.
[42]HARRIS N S, TAYLOR G J. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J]. Journal of Experimental Botany,2001,52(360):1473-1481.
[43]YAN B F, NGUYEN C, POKROVSKY O S, et al. Contribution of remobilization to the loading of cadmium in durum wheat grains:impact of post-anthesis nitrogen supply[J]. Plant and Soil,2018,424(1/2):591-606.
[44]任超,任彧仲,王浩,等. 镉胁迫下不同小麦品种对镉的积累特性[J]. 环境科学,2022,43(3):1606-1619.
[45]史高玲,马鸿翔,娄来清,等. 小麦株高和茎秆不同部位砷镉磷含量与籽粒砷镉磷含量的关系[J]. 农业环境科学学报,2017,36(1):8-15.
[46]FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption, transport, andaccumulation of cadmium in an intact rice plant[J]. Plant Physiology,2010,152(4):1796-1806.
相似文献/References:
[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(02):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(02):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(02):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(02):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(02):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(02):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(02):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(02):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]