[1]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203-212.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
 YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(02):203-212.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
点击复制

绿豆窄叶突变体vrnl9基因的精细定位与转录组分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年02期
页码:
203-212
栏目:
遗传育种·生理生化
出版日期:
2024-02-25

文章信息/Info

Title:
Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean
作者:
叶卫军吴泽江田东丰张阴张玲玲周斌
(安徽省农业科学院作物研究所,安徽合肥230031)
Author(s):
YE Wei-junWU Ze-jiangTIAN Dong-fengZHANG YinZHANG Ling-lingZHOU Bin
(Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China)
关键词:
绿豆窄叶vrnl9基因基因定位转录组分析
Keywords:
mungbeannarrow leafvrnl9 genegene mappingtranscriptome analysis
分类号:
S522
DOI:
doi:10.3969/j.issn.1000-4440.2024.02.002
摘要:
叶片是绿豆最重要的光合作用场所,其形态结构影响光合作用、群体结构和产量。筛选和鉴定绿豆叶形突变体材料,为探究叶片发育的分子调控机理和叶形遗传改良奠定基础。在皖科绿3号EMS(Ethyl methyl sulphonate)诱变突变体库中鉴定出1个窄叶突变体vrnl9,并对该突变体进行表型鉴定、基因定位和转录组分析。表型分析发现,窄叶突变体vrnl9叶片宽较野生型皖科绿3号显著减小,叶面积和叶柄长也显著缩减;突变体主茎退化,生育期延长10 d。在突变位点的定位中,本研究利用苏绿16-10与突变体vrnl9杂交构建的F2群体进行遗传分析和基因精细定位。结果表明,窄叶突变体vrnl9的窄叶表型受单个隐性核基因控制(χ2=1.40)。BSA测序分析将突变位点定位在第9染色体上0~3.1 Mb的区间内,结合图位克隆的方法,本研究将窄叶基因vrnl9定位在标记NL-15和NL-28之间354.6 kb的区间内。转录组学分析发现,与野生型皖科绿3号相比,突变体vrnl9中有182个基因的表达量发生显著改变,其中86个上调、96个下调。KEGG分析结果表明,差异表达基因显著富集在植物激素信号传导、萜类骨架的生物合成、玉米素的生物合成等代谢通路。这些研究结果为克隆窄叶基因vrnl9和解析绿豆叶片生长发育的分子调控机理提供理论依据。
Abstract:
Leaf is the most important place for mungbean photosynthesis, and its morphological structure affects photosynthesis, population structure and yield in mungbean. Screening and identification of leaf shape mutants can lay the foundation for studying molecular regulation mechanism of leaf development and genetic improvement of leaf shape in mungbean. A narrow leaf mutant vrnl9 was identified from an ethyl methyl sulfonate (EMS) induced Wankelü 3 (WK3) mutant library. Phenotype identification, gene mapping and transcriptome analysis for vrnl9 were completed. Phenotype analysis showed that the leaf width, leaf area and petiole length of vrnl9 were significantly decreased compared with wild-type WK3. The main stem of mutant degenerated and the growth period was extended by ten days. In order to map the mutation site, the F2 population constructed by the cross between Sulü16-10 and the mutant vrnl9 was used for genetic analysis and fine mapping. The narrow leaf trait of vrnl9 was controlled by a single recessive nuclear gene (χ2=1.40). The BSA sequencing analysis showed that the mutation site was located within an interval of 0-3.1 Mb on chromosome 9. The narrow-leaf gene vrnl9 was finally narrowed down to a 354.6 kb region between the markers NL-15 and NL-28 by using map-based cloning strategy. Transcriptome analysis revealed that the expression levels of 182 genes in mutant vrnl9 were significantly changed compared with wild-type WK3, of which 86 genes were up-regulated and 96 genes were down-regulated. KEGG analysis results showed that the differentially expressed genes were significantly enriched in plant hormone signal transduction, terpenoid backbone biosynthesis, zeatin biosynthesis and other metabolic pathways. These results provide a theoretical basis for cloning vrnl9 and understanding the molecular regulation mechanism of leaf development in mung bean.

参考文献/References:

[1]NAIR R M, SCHAFLEITNER R, KENYON L, et al. Genetic improvement of mung bean[J]. SABRAO Journal of Breeding and Genetics,2012,44(44):177-190.
[2]YAQUB M, MAHMOOD T, AKHTAR M, et al. Induction of mungbean [Vigna radiata (L.) Wilczek] as a grain legume in the annual rice-wheat double cropping system[J]. Pakistan Journal of Botany,2010,42(5):3125-3135.
[3]ALAM M K, ISLAM M M, SALAHIN N, et al. Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions[J]. The Scientific World Journal,2014,2014:1-15.
[4]陈新,袁星星,陈华涛,等. 绿豆研究最新进展及未来发展方向[J]. 金陵科技学院学报,2010,26(2):59-68.
[5]王明海,徐宁,包淑英,等. 绿豆的营养成分及药用价值[J]. 现代农业科技,2012(6):341-342.
[6]KIM S K, NAIR R M, LEE J, et al. Genomic resources in mungbean for future breeding programs[J]. Frontiers in Plant Science,2015,6:626.
[7]赵丹,程须珍,王丽侠,等. 绿豆基因组研究进展[J]. 植物遗传资源学报,2010,11(5):583-588.
[8]KANG Y J, KIM S K, KIM M Y, et al. Genome sequence of mungbean and insights into evolution within Vigna species[J]. Nature Communications,2014,5:5443.
[9]GUENOT B, BAYER E, KIERZKOWSKI D, et al. Pin1-independent leaf initiation in Arabidopsis[J]. Plant Physiology,2012,159(4):1501-1510.
[10]XU J, WANG L, ZHOU M Y, et al. Narrow albino leaf 1 is allelic to CHR729,regulates leaf morphogenesis and development by affecting auxin metabolism in rice[J]. Plant Growth Regulation,2017,82(1):175-186.
[11]HUNTER C, WILLMANN MR, WU G, et al. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis[J]. Development,2006,133(15):2973-2981.
[12]乐丽娜,黄敏仁,陈英.植物叶形态建成的分子机理研究进展[J].分子植物育种,2016,14(11):3205-3213.
[13]SAKAMOTO T, MORINAKA Y, INUKAI Y, et al. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice[J]. Plant Journal,2013,73(4):676-688.
[14]ZHANG G H, XU Q, ZHU X D, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. Plant Cell,2009,21(3):719-735.
[15]DAI M, HU Y, ZHAO Y, et al. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development[J]. Plant Physiology,2007,144(1):380-390.
[16]ESHED Y, IZHAKI A, BAUM S F, et al. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities[J]. Development,2004,131(12):2997-3006.
[17]SINGH V P, YADAR R C, SAHARAN R P, et al. 绿豆裂叶的遗传[J]. 国外农学——杂粮作物,1986(4):50-51.
[18]JIAO K, LI X, GUO W, et al. Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean[J]. Molecular Breeding,2016,36:128.
[19]王洁. 绿豆高密度遗传图谱构建及重要农艺性状QTL定位[D]. 北京:中国农业科学院,2020.
[20]JIAO K, LI X, SU S, et al. Genetic control of compound leaf development in the mungbean (Vigna radiata L.)[J]. Horticulture Research,2019,6:23.
[21]JIAO K, LI X, GUO Y, et al. Regulation of compound leaf development in mungbean (Vigna radiata L.) by CUP-SHAPED COTYLEDON/NO APICAL MERISTEM (CUC/NAM) gene[J]. Planta,2019,249(3):765-774.
[22]程须珍,王素华,王丽侠. 绿豆种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006.
[23]FEKIH R, TAKAGI H, TAMIRU M, et al. MutMap+:genetic mapping and mutant identification without crossing in rice[J]. PLoS One,2013,8(7):e68529.
[24]TAKAGI H, UEMURA A, YAEGASHI H, et al. MutMap-Gap:whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist,2013,200(1):276-283.
[25]TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology,2010,8(5):511-515.
[26]LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15:550.
[27]MORIYA Y, ITOH M, OKUDA S, et al. KAAS:an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research,2007,35:182-185.
[28]叶卫军,杨勇,张丽亚,等. 绿豆EMS诱变突变体库的构建及表型分析[J]. 中国农学通报,2020,36(17):36-41.
[29]MCCALLUM C M, COMAI L, GREENE E A, et al. Targeted screening for induced mutations[J]. Nature Biotechnology,2000,18(4):455-457.
[30]杨健源,张少红,姜先芽,等. 三黄占2号EMS诱变突变体库的构建与稻瘟病抗性初步评价[J]. 广东农业科学,2011,38(16):1-3.
[31]张婷,温宏伟,袁凯,等. 晋麦47EMS突变体库的构建及高代突变材料品质性状的初步分析[J]. 核农学报,2021,35(8):1731-1739.
[32]ZHANG M, ZHANG X, JIANG X, et al. iSoybean:a database for the mutational fingerprints of soybean[J]. Plant Biotechnology Journal,2022,20(8):1435-1437.
[33]GUO Z, CAI L, CHEN Z, et al. Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq[J]. Royal Society Open Science,2020,7(11):201081.
[34]KLEIN H, XIAO Y, CONKLIN P A, et al. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize[J]. G3 (Bethesda),2018,8(11):3583-3592.
[35]KLYMIUK V, CHAWLA H S, WIEBE K, et al. Discovery of stripe rust resistance with incomplete dominance in wild emmer wheat using bulked segregant analysis sequencing[J]. Communications Biology,2022,5(1):826.
[36]ZHANG K, YUAN M, XIA H, et al. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut[J]. Theoretical and Applied Genetics,2022,135(5):1529-1540.
[37]ZHANG Y, SONG J, WANG L, et al. Identifying quantitative trait loci and candidate genes conferring resistance to soybean mosaic virus SC7 by quantitative trait loci-sequencing in soybean[J]. Frontiers in Plant Science,2022,13:843633.
[38]关伊宁,邱丹,李信,等. 绿豆荚粒数增多突变体snpp1的表型分析及基因定位[J]. 分子植物育种,2021,19(15):5071-5076.
[39]LIU J, LIN Y, CHEN J, et al. Identification and clarification of VrCYCA1:a key genic male sterility-related gene in mungbean by multi-omics analysis[J]. Agriculture,2022,12(5):686.
[40]李军,吴霁蓂,高广春,等. 番红花多柱头突变体Cs5的转录组分析[J]. 江苏农业学报,2021,37(6):1630-1632.
[41]ZHAO B, LIU Q, WANG B, et al. Roles of phytohormones and their signaling pathways in leaf development and stress responses[J]. Journal of Agricultural and Food Chemistry,2021,69(12):3566-3584.
[42]张林甦,韩忠耀,王传明,等. 阴地蕨全转录组分析及植物激素信号转导相关基因筛选[J]. 广西植物,2020,40(4):536-545.
[43]DURBAK A, YAO H, MCSTEEN P. Hormone signaling in plant development[J]. Current Opinionin Plant Biology,2012,15(1):92-96.
[44]姜生秀,李德禄. 植物丝裂原活化蛋白激酶级联信号转导通路研究进展[J]. 西北植物学报,2016,36(6):1278-1284.

相似文献/References:

[1]李阳,袁娜,刘大亮,等.绿豆Copia类反转座子全基因组注释及进化分析[J].江苏农业学报,2020,(04):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
 LI Yang,YUAN Na,LIU Da-liang,et al.Annotation and evolutionary analysis of the Copia retrotransposons in mung bean[J].,2020,(02):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
[2]李灵慧,吴然然,陈景斌,等.基于PARMS技术的绿豆抗叶斑病基因VrTAF5分子标记的开发[J].江苏农业学报,2021,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
 LI Ling-hui,WU Ran-ran,CHEN Jing-bin,et al.Development of molecular markers of mung bean leaf spot disease resistance gene VrTAF5 based on PARMS technology[J].,2021,(02):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
[3]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
 ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(02):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
[4]刘金洋,林云,陈景斌,等.绿豆C3H和NBS转录因子家族成员鉴定及盐胁迫响应分析[J].江苏农业学报,2023,(05):1097.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]
 LIU Jin-yang,LIN Yun,CHEN Jing-bin,et al.Identification and salt stress response analysis of mungbean C3H and NBS transcription factor family members[J].,2023,(02):1097.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]

备注/Memo

备注/Memo:
收稿日期:2022-12-30基金项目:国家食用豆产业技术体系项目(CARS-08-Z11)作者简介:叶卫军(1988-),男,安徽合肥人,博士,主要从事食用豆遗传育种和基因挖掘研究。(E-mail)963472965@163.com通讯作者:周斌,(E-mail)18756019871@139.com
更新日期/Last Update: 2024-03-17