参考文献/References:
[1]徐冰石,陈伏生,张林平,等. 土壤产气肠杆菌的解磷特性及其对毛竹苗的促生作用[J]. 林业科学研究,2022,35(3):38-46.
[2]LIU J, PENG J, XIA H, et al. High soil available phosphorus favors carbon metabolism in cotton leaves in pot trials[J]. Journal of Plant Growth Regulation,2020,40(3):974-985.
[3]MEENA V, MEENA S K, VERMA J P, et al. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency:a review[J]. Ecological Engineering,2017,107:8-32.
[4]都江雪,柳开楼,黄晶,等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报,2021,58(2):476-486.
[5]LI H, LIU J, LI G, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. Ambio,2015,44(2):274-285.
[6]张艺灿,刘凤之,王海波. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料,2020(2):1-9.
[7]RALIYA R, TARAFDAR J C, BISWAS P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi[J]. Journal of Agricultural and Food Chemistry,2016,64(16):3111-3118.
[8]JORQUERA M A, HERNNDEZ M T, RENGEL Z, et al. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil[J]. Biology and Fertility of Soils,2008,44(8):1025-1034.
[9]刘玲利,卫迎,刘洋,等. 不同解磷菌群对复垦土壤磷素形态及油菜产量的影响[J]. 华北农学报,2017,32(6):229-234.
[10]胡倡,李慧明,伍惠,等. 解磷菌和根瘤菌复合接种对大豆和紫云英共生固氮的影响[J]. 华中农业大学学报,2020,39(4):38-45.
[11]庄馥璐,柴小粉,高蓓蓓,等. 苹果根际解磷菌的分离筛选及解磷能力[J]. 中国农业大学学报,2020,25(7):69-79.
[12]贺帅兵,胡文革,靳希桐,等. 艾比湖湿地芦苇根际土壤氨氧化古菌的多样性和群落结构[J]. 微生物学报,2019,59(8):1576-1585.
[13]王婷,李朝周,焦健,等. 不同生境芦苇根茎生长发育与根际微环境的比较研究[J]. 干旱区研究,2021,38(1):233-240.
[14]PARK J H, BOLAN N, MEGHARAJ M, et al. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.)[J]. Journal of Environmental Management,2011,92(4):1115-1120.
[15]NATH D, MAURYA B R, MEENA V S. Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals[J]. Biocatalysis and Agricultural Biotechnology,2017,10:174-181.
[16]兰晓君. 六种甘肃乡土草根际促生菌资源筛选、评价及促生机理研究[D]. 兰州:甘肃农业大学,2020.
[17]孟建宇,李蘅,杨鸿儒,等. 内蒙古荒漠灌木根际解磷菌多样性及其解磷和产铁载体能力[J]. 环境科学研究,2021,34(11):2714-2721.
[18]杜慧慧,朱芙蓉,杨敏,等. 不同生境滇重楼根际解磷菌的筛选与鉴定[J]. 中国中药杂志,2021,46(4):915-922.
[19]许芳芳. 荒漠植物耐盐碱PGPR的分离筛选及其对盐胁迫下三种植物的促生效应和机理[D]. 呼和浩特:内蒙古农业大学,2017.
[20]柳鑫鹏,臧淑英,智刚,等. 盐碱土耐盐碱细菌筛选及其植物促生能力研究[J]. 土壤通报,2022,53(3):567-576.
[21]陈岩岩,叶项宇,常肖锐,等. 板栗根际高效解磷菌的筛选[J]. 经济林研究,2021,39(2):132-139.
[22]骆韵涵,柯志滨,钟超,等. 红树林土壤解磷菌的分离鉴定及解磷特性[J]. 中国环境科学,2020,40(6):2664-2673.
[23]王艳霞,解志红,张蕾,等. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报,2020,60(5):1023-1035.
[24]COLLAVINO M M, SANSBERRO P A, MROGINSKI L A, et al. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils,2010,46:727-738.
[25]AL-ENAZY A A, AL-BARAKAH F, AL-OUD S, et al. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil[J]. Archives of Agronomy and Soil Science,2018,64(10):1394-1406.
[26]陈兰兰,邱慧珍,董爱菊,等. 马铃薯根系分泌物及酚酸类物质对萎缩芽孢杆菌促生菌株QHZ3趋化成膜的介导作用[J]. 微生物学通报,2021,48(10):3642-3654.
[27]张奇,张清旭,陈尧,等. 稗草根系分泌物诱导下水稻化感抑草潜力及根际土壤微生物多样性变化[J]. 应用与环境生物学报,2020,26(4):936-942.
[28]HARDOIM P R, VAN-OVERBEEK L S, ELSAS J D V. Properties of bacterial endophytes and their proposed role in plant growth[J]. Trends in Microbiology,2008,16(10):463-471.
[29]WATT M, MCCULLY M E, KIRKEGAARD J A. Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat[J]. Functional Plant Biology,2003,30(5):483-491.
[30]孙真,郑亮,邱浩斌. 植物根际促生细菌定殖研究进展[J]. 生物技术通报,2017,33(2):8-15.
[31]何振嘉,王启龙,罗林涛,等. 不同水稻品种在陕北盐碱地的适宜性[J]. 排灌机械工程学报,2022,40(8):857-864.
[32]舒志万,韩睿,王智博,等. 盐碱土壤中嗜盐微生物促进植物生长与代谢调节研究进展[J]. 江苏农业科学,2022,50(16):27-36.
[33]BERG M, KOSKELLA B. Nutrient-and dose-dependent microbiome-mediated protection against a plant pathogen[J]. Current Biology,2018,28(15):2487-2492.
[34]LI H, QIU Y, YAO T, et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings[J]. Soil & Tillage Research,2020,199:104577.
[35]孙韵雅,陈佳,王悦,等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报,2020,28(5):1203-1215.
[36]RANA A, SAHARAN B, JOSHI M, et al. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat[J]. Annals of Microbiology,2011,61(4):893-900.
[37]何宏涛,王玉虎,周洪友,等. 番茄根际产生长素菌株分离及其对番茄和马铃薯幼苗的促生作用[J]. 江苏农业科学,2022,50(19):219-225.