[1]杨婷,王守红,马林杰,等.好氧堆肥对生物炭理化性质及吸附Cd2+稳定性的影响[J].江苏农业学报,2024,(01):75-82.[doi:doi:10.3969/j.issn.1000-4440.2024.01.008]
 YANG Ting,WANG Shou-hong,MA Lin-jie,et al.Effects of aerobic composting on physicochemical properties of biochar and the adsorption stability of Cd2+[J].,2024,(01):75-82.[doi:doi:10.3969/j.issn.1000-4440.2024.01.008]
点击复制

好氧堆肥对生物炭理化性质及吸附Cd2+稳定性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
75-82
栏目:
耕作栽培·资源环境
出版日期:
2024-01-30

文章信息/Info

Title:
Effects of aerobic composting on physicochemical properties of biochar and the adsorption stability of Cd2+
作者:
杨婷1王守红1马林杰1张诚信1寇祥明1张家宏12杨军1袁秦12徐荣1
(1.江苏里下河地区农业科学研究所,江苏扬州225007;2.江苏省生态农业工程技术研究中心,江苏扬州225009)
Author(s):
YANG Ting1WANG Shou-hong1MA Lin-jie1ZHANG Cheng-xin1KOU Xiang-ming1ZHANG Jia-hong12 YANG Jun1YUAN Qin12XU Rong1
(1.Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China;2.Jiangsu Research & Engineering Center for Ecological Agriculture, Yangzhou 225009, China)
关键词:
生物炭镉(Cd2+)堆肥吸附稳定性
Keywords:
biocharcadmium(Cd2+)compostingadsorption stability
分类号:
X703
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.008
文献标志码:
A
摘要:
生物炭可作为畜禽粪污好氧堆肥中去除重金属的功能材料,但堆体内部复杂的环境变化会影响生物炭的理化性质,从而影响其对重金属吸附的稳定性。将普通秸秆生物炭(BC)和磁性秸秆生物炭(FBC)置于牛粪中进行30 d好氧堆肥试验,研究两种生物炭基本理化性质及对Cd2+吸附稳定性的影响。结果表明:堆肥处理使BC和FBC的比表面积分别增加20.56%和76.64%,总孔容分别下降2.36%和3.70%,平均孔径分别下降19.17%和46.54%,表面官能团发生变化,FBC的饱和磁化强度下降43.67%。堆肥后,饱和吸附Cd2+的两种生物炭BC和FBC的TCLP提取态Cd(TCLP-Cd)占比和TCLP提取液pH(TCLP-pH)均呈下降趋势,其中TCLP-Cd占比分别从28.31%和22.85%显著下降至26.76%和13.85%(P<0.05),TCLP-pH分别从3.66和3.29显著下降至3.51和3.14。综上,堆肥老化改变了两种生物炭的理化性质,降低了其酸可提取态Cd的含量,提高了其吸附Cd2+的稳定性,且FBC中Cd2+的稳定性更强。
Abstract:
Biochar can be used as a functional material for removing heavy metals in aerobic composting of livestock manure. But the complex environmental changes inside the pile will affect the physical and chemical properties of biochar, thus affecting its adsorption stability of heavy metals. A 30-day aerobic composting experiment was conducted by placing ordinary straw biochar (BC) and magnetic straw biochar (FBC) in cow manure to study the basic physicochemical properties of the two types of biochar and the impact on the adsorption stability of Cd2+.The results showed that composting treatment increased the specific surface area of BC and FBC by 20.56% and 76.64%, respectively, decreased the total pore volume by 2.36% and 3.70%, and decreased the average pore size by 19.17% and 46.54%, respectively. Moreover, the surface functional groups changed, and the saturation magnetization of FBC decreased by 43.67%. After composting, the proportion of TCLP extractable Cd (TCLP-Cd) and the pH of TCLP extraction solution (TCLP-pH)of BC and FBC with saturated adsorption of Cd2+ showed a decreasing trend. The proportion of TCLP-Cd significantly decreased from 28.31% and 22.85% to 26.76% and 13.85%(P<0.05),respectively,and TCLP-pH significantly decreased from 3.66 and 3.29 to 3.51 and 3.14(P<0.05), respectively. In summary, the composting aging changed the physical and chemical properties of BC and FBC, reduced the content of extractable Cd, and improved the stability of Cd2+ adsorption, and the stability of Cd2+ in FBC was better.

参考文献/References:

[1]FOONG S Y, CHAN Y H, CHIN B L F, et al. Production of biochar from rice straw and its application for wastewater remediation-an overview [J]. Bioresource Technology,2022,360:127588.
[2]白珊,倪幸,杨瑗羽,等. 不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J]. 江苏农业学报,2021,37(5):1199-1205.
[3]HASSAN M, NAIDU R, DU J H, et al. Critical review of magnetic biosorbents:their preparation, application, and regeneration for wastewater treatment[J]. Science of the Total Environment,2020,702:134893.
[4]胡龙龙,曹勇,胡友彪. 改性生物炭的制备及其环境应用进展[J]. 江苏农业科学,2020,48(21):46-52.
[5]KAMMANN C I, SCHMIDT H P, MESSERSCHMIDT N, et al. Plant growth improvement mediated by nitrate capture in co-composted biochar[J]. Scientific Reports,2015,5:11080.
[6]LIU L, YUAN M, WANG X, et al. Biochar aging:properties, mechanisms, and environmental benefits for adsorption of metolachlor in soil[J]. Environmental Technology & Innovation,2021,24:101841.
[7]YUAN C P, GAO B L, PENG Y T, et al. A meta-analysis of heavy metal bioavailability response to biochar aging:importance of soil and biochar properties[J]. Science of the Total Environment,2021,756:144058.
[8]孙晓芳,刘志伟,来祺,等. 生物炭及其老化对土壤中多菌灵吸附和降解的影响[J]. 江苏农业科学,2021,49(18):228-234.
[9]XING D, CHENG H G, NING Z P, et al. Field aging declines the regulatory effects of biochar on cadmium uptake by pepper in the soil[J]. Journal of Environmental Management,2022,321:115832.
[10]HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility[J]. Nature Communications,2017,8(1):1089.
[11]WANG L, LI Z, WANG Y, et al. Performance and mechanisms for remediation of Cd(Ⅱ) and As(Ⅲ) co-contamination by magnetic biochar-microbe biochemical composite:competition and synergy effects[J]. Science of the Total Environment,2021,750:141672.
[12]王海候,何胥,陶玥玥,等. 添加不同粒径炭基辅料改善猪粪好氧堆肥质量的效果[J]. 农业工程学报,2018,34(9):224-232.
[13]KHAN N, CLARK I, SNCHEZ-MONEDERO M A, et al. Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost[J]. Chemosphere,2016,142:14-23.
[14]高鹏,陈昱,梁媛. 老化作用促进生物炭已吸附Cd(Ⅱ)的进一步稳定化研究[J]. 环境科学学报,2018,38(5):1877-1884.
[15]LIANG H G, ZHU C X, JI S, et al. Magnetic Fe2O3/biochar composite prepared in a molten salt medium for antibiotic removal in water[J]. Biochar,2022,4(1):13.
[16]沈杭. 生物炭对猪粪及城市污泥好氧堆肥过程的影响及其理化性质变化[D]. 重庆:西南大学,2018.
[17]花昀,刘杨,冯彦房,等. 微生物陈化可提升麦秆水热炭对Cd2+吸附性能[J]. 农业环境科学学报,2020,39(7):1613-1622.
[18]魏园园. 软磁铁素体不锈钢的成分设计及性能研究[D]. 南京:南京理工大学,2017.
[19]彭红宇,聂兆君,刘红恩,等. 施用低温生物炭对土壤镉、铅生物有效性的影响[J]. 江苏农业学报,2022,38(6):1524-1531.
[20]HE X, JIANG J, HONG Z N, et al. Effect of aluminum modification of rice straw-based biochar on arsenate adsorption[J]. Journal of Soils and Sediments,2020,20(8):3073-3082.
[21]谭连帅. 陈化作用对生物炭理化性质及Pb(Ⅱ)吸附性能的影响研究[D]. 杨凌:西北农林科技大学,2020.
[22]韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 北京:中国科学院大学,2017.
[23]GUPTA V K, NAYAK A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles[J]. Chemical Engineering Journal,2012,180:81-90.
[24]CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology,2011,102(2):716-723.
[25]李冉,孟海波,沈玉君,等. 改性生物炭对猪粪堆肥过程重金属钝化效果研究[J]. 农业环境科学学报,2018,37(10):2304-2311.
[26]WANG L W, O′CONNOR D, RINKLEBE J, et al. Biochar aging:Mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology,2020,54(23):14797-14814.
[27]汤韵涵,刘岩松,高豪,等. 厨余垃圾厌氧消化合成高附加值化学品的研究进展[J]. 生物加工过程,2023,21(2):153-163,175.
[28]古君禹,王秋君,孙倩,等. 农林废弃物堆肥产物复配黄瓜育苗基质配方筛选[J]. 江苏农业学报,2022,38(5):1238-1247.
[29]董丽艳,朱军保,虎海波. 碳氮比对芒果树剪枝堆肥的影响[J]. 南方农业学报,2022,53(10):2963-2970.
[30]刘欣宇,曹盼,林永锋,等. 餐厨堆肥对水稻产量、稻米品质及水土环境的影响 [J]. 江苏农业科学,2022,50(20):253-257.
[31]王子睿,方昭,林永锋,等. 餐厨废弃物堆肥不同施用水平下的水稻田应用适宜性研究[J]. 江苏农业科学,2022,50(11):238-244.
[32]黎妍妍,彭五星,张婷,等. 万寿菊秸秆堆肥在缓解烟草连作障碍中的作用 [J]. 南方农业学报,2022,53(2):451-459.
[33]司友斌,王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响[J]. 环境科学,2015,36(9):3533-3542.
[34]GOI-URTIAGA A, COURTIER-MURIAS D, PICCA G, et al. Response of water-biochar interactions to physical and biochemical aging[J]. Chemosphere,2022,307:136071.
[35]陈昱. 生物炭对重金属的长期稳定性研究[D]. 苏州:苏州科技大学,2016.
[36]孙家婉,张振华,赵玉萍,等. 生物炭改性及其在农田土壤重金属修复中的应用研究进展[J]. 江苏农业科学,2022,50(10):9-15.
[37]JOSEPH S, KAMMANN C I, SHEPHERD J G, et al. Microstructural and associated chemical changes during the composting of a high temperature biochar:mechanisms for nitrate, phosphate and other nutrient retention and release[J]. Science of the Total Environment,2018,618:1210-1223.
[38]XU Z B, XU X Y, TSANG D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution,2018,242:1362-1370.
[39]TANG J C, ZHU W Y, KOOKANA R, et al. Characteristics of biochar and its application in remediation of contaminated soil[J]. Journal of Bioscience and Bioengineering,2013,116(6):653-659

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(01):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(01):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(01):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(01):887.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(01):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(01):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[9]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(01):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
[10]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(01):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]

备注/Memo

备注/Memo:
收稿日期:2023-01-18基金项目:江苏省“六大人才高峰”培养基金项目(NY-244);扬州市重点研发计划项目(YZ2022064);江苏里下河地区农业科学研究所科研专项基金项目[SJ(21)303]作者简介:杨婷(1994-),女,甘肃兰州人,硕士,研究实习员,主要研究方向为农业废弃物资源化利用。(E-mail)yt15295166601@163.com通讯作者:徐荣,(E-mail)20132402@jaas.ac.cn
更新日期/Last Update: 2024-03-17