参考文献/References:
[1]刘维. 基于优质棉基地建设的新疆棉花产业高质量发展实现路径研究[D]. 石河子:石河子大学,2021.
[2]MOSHELION M . The dichotomy of yield and drought resistance: translation challenges from basic research to crop adaptation to climate change[J]. EMBO Reports,2020,21(12):e51598.
[3]李海明. 棉花抗旱品种筛选及相关性状的关联分析[D]. 保定:河北农业大学,2019.
[4]KAMAL K, MANISH N R, ALIREZA N. Recent progress in germplasm evaluation and gene mapping to enable breeding of drought-tolerant wheat[J]. Frontiers in Plant Science,2020,11:1149.
[5]ZHU Q, FANG W Y, LI Y R, et al. Comparison of rice yield and evaluation methods for drought resistance under drought stress in the whole growth period and flowering period[J]. Agricultural Biotechnology,2022,11(3):22-28.
[6]ZOU J, WEI H U, LI Y X, et al. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.) [J]. Journal of Integrative Agriculture,2020,19(2):495-508.
[7]ASGHAR MA, JIANG H K, SHUI Z W, et al. Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings[J]. Journal of Integrative Agriculture,2021,20(9):2382-2394.
[8]SAHAYS, ROBLEDO-ARRATIA L, GLOWACKA K, et al. Root NRT, NiR, AMT, GS, GOGAT and GDH expression levels reveal NO and ABA mediated drought tolerance in Brassica juncea L.[J]. Scientific Reports,2021,11(1):7992.
[9]AYALEWH, LIU H, BRNER A, et al. Genome-wide association mapping of major root length qtls under peg induced water stress in wheat[J]. Frontiers in Plant Science,2018,9:1759.
[10]MUSCOLO A, SIDARI M, ANASTASI U, et al. Effect of PEG-induced drought stress on seed germination of four lentil genotypes[J]. Journal of Plant Interactions,2014,9(1):354-363.
[11]QIAO Y J, REN J H, YIN L N, et al. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance[J]. BMC Plant Biology,2020,20(1):218.
[12]王焱. 紫花苜蓿种质资源表型性状鉴定及抗旱性评价[D]. 银川:宁夏大学,2018.
[13]张雪妍,刘传亮,王俊娟,等. PEG胁迫方法评价棉花幼苗耐旱性研究[J]. 棉花学报,2007,19(3):205-209.
[14]王晨. 干旱胁迫对棉花生理代谢及棉蚜种群发生的影响[D]. 扬州:扬州大学,2022.
[15]王延琴,杨伟华,许红霞. 水分胁迫对棉花种子萌发的影响[J]. 棉花学报,2009,21(1):73-76.
[16]KHANZADAH, WASSAN G M, HE H H, et al . Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping[J]. Journal of Advanced Research,2020,24:447-461.
[17]韩永亮,李世云,路正营,等. 62份陆地棉种质资源苗期抗旱性综合评价及耐旱种质筛选[J]. 干旱地区农业研究,2021,39(6):28-38.
[18]李亚猛. 陆地棉野生种系耐旱性初步评价[D]. 保定:河北农业大学,2019.
[19]SUN F L, CHEN Q, CHEN Q J, et al. Screening of key drought tolerance indices for cotton at the flowering and boll setting stage using the dimension reduction method[J]. Frontiers in Plant Science,2021,12:619926.
[20]GOUR P, KANSAL S, AGARWAL P, et al. Variety-specific transcript accumulation during reproductive stage in drought- stressed rice[J]. Physiologia Plantarum,2022,174(1):e13585.
[21]赵丽英. 陆地棉干旱胁迫鉴定与早期应答蛋白质组学研究[D]. 邯郸:河北工程大学,2021.
[22]KAPOOR D, BHARDWAJ S, LANDI M, et al. The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production[J]. Applied Sciences,2020,10(16):5692.
[23]MORALES M, S MUNN-BOSCH. Malondialdehyde: facts and artifacts[J]. Plant Physiology,2019,180:1246-1250.
[24]邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
[25]刘光辉,陈全家,吴鹏昊,等. 棉花花铃期抗旱性综合评价及指标筛选[J]. 植物遗传资源学报,2016,17(1):53-62.
[26]UZILDAY B, TURKAN I, SEKMEN A H, et al. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress[J]. Plant Science,2012,182:59-70.
[27]WANG R, JI S, ZHANG P, et al. Drought effects on cotton yield and fiber quality on different fruiting branches[J]. Crop Science,2016,56(3):1265-1276.
[28]ZHANG P, BAI J, LIU Y, et al. Drought resistance of ten ground cover seedling species during roof greening[J]. PLoS One,2020,15(6):e0220598.
[29]DOSSA K, YEHOUESSI L, LIKENG-LI-NGUE B, et al. Comprehensive screening of some west and central african sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits[J]. Agronomy,2017,7(4):83.
[30]陈玉梁,石有太,罗俊杰,等. 甘肃彩色棉花抗旱性农艺性状指标的筛选鉴定[J]. 作物学报,2012,38(9):1680-1687.
[31]冯方剑,宋敏,陈全家,等. 棉花苗期抗旱相关指标的主成分分析及综合评价[J]. 新疆农业大学学报,2011,34(3):211-217.
[32]程林梅,张原根,阎继耀,等. 干旱和复水对棉花叶片几种生理指标的影响[J]. 中国棉花,1996(2):17-18.
[33]母洪娜,王炜,樊蕾,等. 印度梨形孢对干旱胁迫下桂花生长及抗旱性的影响[J]. 南京林业大学学报(自然科学版),2023,47(2):101-106.
[34]邹成林,吕巨智,翟瑞宁,等. 广西玉米品种萌芽期生理生化特性及其抗旱性综合评价[J]. 南方农业学报,2022,53(3):785-794.
[35]胡根海,董娜,晁毛妮,等. PEG模拟干旱胁迫对不同抗逆性棉花的生理特性的影响[J]. 干旱地区农业研究,2017,35(5):223-228.
[36]田又升,范术丽,庞朝友,等.全生育期干旱胁迫对棉花形态、生理、光合作用和产量的影响[J]. 华北农学报,2017,32(5):224-231.
[37]NIU J, ZHANG S P, LIU S D, et al. The compensation effects of physiology and yield in cotton after drought stress[J]. Journal of Plant Physiology,2018,224:30-48.
[38]姜梦辉. 棉花陆海杂交重组自交系抗旱性鉴定及抗旱基因挖掘[D]. 乌鲁木齐:新疆农业大学,2020.
相似文献/References:
[1]赵亮,狄佳春,陈旭升.棉花基因组数据库中CPS&KS 基因的查找与分析[J].江苏农业学报,2016,(01):27.[doi:10.3969/j.issn.1000-4440.2016.01.004
]
ZHAO Liang,DI Jia-chun,CEHN Xu-sheng.Analysis of ent-copalyl diphosphate aynthase and ent-kaurene synthase (CPS&KS) gene family in cotton genome databases[J].,2016,(01):27.[doi:10.3969/j.issn.1000-4440.2016.01.004
]
[2]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(01):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[3]杨长琴,刘瑞显,张国伟,等.花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Cellulose accumulation and fiber strength affected by drought during flowering and bolling stage in cotton[J].,2015,(01):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
[4]杨长琴,刘瑞显,张国伟,等.花铃期渍水对棉铃对位叶光合速率、物质累积及产量的影响[J].江苏农业学报,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Photosynthesis of subtending leaves of bolls, dry matter accumulation and cotton yield in response to waterlogging during flowering and boll-forming stage[J].,2015,(01):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
[5]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(01):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[6]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(01):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[7]郭琪,徐珍珍,黄芳,等.棉花HKT基因家族的全基因组分析[J].江苏农业学报,2017,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
GUO Qi,XU Zhen-zhen,HUANG Fang,et al.Genome-wide analysis of high-affinity potassium transporter gene family in cotton[J].,2017,(01):975.[doi:doi:10.3969/j.issn.1000-4440.2017.05.003]
[8]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(01):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[9]徐剑文,孔杰,赵君,等.盐胁迫下棉花萌发、成苗和产量相关性状的QTL定位[J].江苏农业学报,2018,(05):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
XU Jian-wen,KONG-Jie,ZHAO Jun,et al.Identification of QTLs conferring the traits related to germination, seedling survival and production of cotton under salt stress[J].,2018,(01):972.[doi:doi:10.3969/j.issn.1000-4440.2018.05.002]
[10]韦陈华,邓国强,颜超,等.高密度重化控技术对小麦后直播棉花成铃时空分布的调控[J].江苏农业学报,2018,(05):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]
WEI Chen-hua,DENG Guo-qiang,YAN Chao,et al.Impact of high planting density with heavy chemical regulation technique on boll spatio-temporal distribution of cotton under direct seeding modes after wheat harvested[J].,2018,(01):1022.[doi:doi:10.3969/j.issn.1000-4440.2018.05.008]