[1]张威,许文静,许亚男,等.基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J].江苏农业学报,2023,(02):321-327.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
 ZHANG Wei,XU Wen-jing,XU Ya-nan,et al.Creation of high oleic acid soybean lines by CRISPR/Cas9[J].,2023,(02):321-327.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
点击复制

基于CRISPR/Cas9基因编辑的高油酸大豆品系创制()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
321-327
栏目:
遗传育种·生理生化
出版日期:
2023-04-30

文章信息/Info

Title:
Creation of high oleic acid soybean lines by CRISPR/Cas9
作者:
张威1许文静12许亚男13张红梅1刘晓庆1崔晓艳1陈新1陈华涛1
(1.江苏省农业科学院经济作物研究所,江苏南京210014;2.南京农业大学园艺学院,江苏南京210095;3.南京农业大学生命科学学院,江苏南京210095)
Author(s):
ZHANG Wei1XU Wen-jing12XU Ya-nan13ZHANG Hong-mei1LIU Xiao-qing1CUI Xiao-yan1CHEN Xin1CHEN Hua-tao1
(1.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;3.College of Life Science, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
CRISPR/Cas9基因编辑大豆油酸GmFAD2-1AGmFAD2-1B
Keywords:
CRISPR/Cas9 gene editingsoybeanoleic acidGmFAD2-1AGmFAD2-1B
分类号:
S565.1
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.003
文献标志码:
A
摘要:
高油酸能够显著提升大豆食用油的稳定性和食用价值,是大豆品质改良的育种目标之一。为提高大豆籽粒油酸含量,本研究采用CRISPR/Cas9多基因编辑技术,同时敲除负调控大豆油酸含量的2个关键基因GmFAD2-1A和GmFAD2-1B。采用农杆菌介导的大豆子叶节转化方法获得20株T0代阳性苗,但发生基因编辑的株系只有11个,其中GmFAD2-1A发生突变的有7株,GmFAD2-1B发生突变的有10株,这2个基因同时发生突变的有6株。经过加代纯合后,检测转基因株系(T3代)大豆籽粒的脂肪酸组分,发现油酸含量显著提升,最高达81.38%,而亚油酸含量则显著降低,获得了高油酸新种质。本研究采取多基因敲除策略,成功突变大豆基因GmFAD2-1A和GmFAD2-1B,并获得高油酸大豆突变体株系,为高油酸大豆育种提供了新的种质资源。
Abstract:
Improving the oleic acid is one of the important objectives for soybean breeding and improvement and will improve the stability and edible value of soybean oil. In the present study, we applied CRISPR/Cas9 gene editing to knock out GmFAD2-1A and GmFAD2-1B, which negatively regulate oleic acid content in soybean. By Agrobacterium-mediated transformation using mature cotyledonary node explants, twenty CRISPR/Cas9 T0 transgenic lines were obtained after stable transformation. Among of them, 11 T0 transgenic lines were detected mutations in the GmFAD2-1A or GmFAD2-1B, including seven GmFAD2-1A transgenic lines, 10 GmFAD2-1B transgenic lines, and six GmFAD2-1A/GmFAD2-1B transgenic lines. The fatty acid profile analysis of T3 soybean seeds revealed that the oleic acid content improved obviously, and reached 81.38%, whereas linoleic acid decreased. In this study, the CRISPR/Cas9 gene editing can successfully edit GmFAD2-1A and GmFAD2-1B, and create high oleic acid soybean germplasm, which provides new germplasm resources for the breeding of high oleic acid.

参考文献/References:

[1]THELEN J J, OHLROGGE J B. Metabolic engineering of fatty acid biosynthesis in plants[J]. Metabolic Engineering, 2002, 4(1): 12-21.
[2]GOLDBOURT U, YAARI S. Cholesterol and coronary heart disease mortality. A 23-year follow-up study of 9902 men in Israel[J]. Arteriosclerosis: An Official Journal of the American Heart Association,1990, 10(4): 512-519.
[3]YANG Z H, PRYOR M, NOGUCHI A, et al. Dietary palmitoleic acid attenuates atherosclerosis progression and hyperlipidemia in low-density lipoprotein receptor-deficient mice[J]. Molecular Nutrition & Food Research, 2019, 63(12): 1900120.
[4]SMITH G D, SONG F, SHELDON T A. Cholesterol lowering and mortality: the importance of considering initial level of risk[J]. British Medical Journal, 1993, 306(6889): 1367.
[5]TOBOREK M, LEE Y W, GARRIDO R, et al. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells[J]. The American Journal of Clinical Nutrition, 2002, 75(1): 119-125.
[6]刘平. 棕榈油酸功能的研究进展[J]. 粮食与油脂, 2020, 33(3): 4-6.
[7]严靖,孙沁梅,冯琴. 反式脂肪酸对血脂代谢异常相关疾病的危害及机制[J]. 医学综述, 2021, 27(11): 2119-2123.
[8]PHAM A, LEE J, SHANNON J G, et al. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait[J]. BMC Plant Biology, 2010, 10: 195.
[9]PHAM A, LEE J, SHANNON J G, et al. A novel FAD2-1A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content[J]. Theoretical and Applied Genetics, 2011, 123(5): 793-802.
[10]HAUN W, COFFMAN A, CLASEN B M, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal,2014, 12(7): 934-940.
[11]DO P T, NGUYEN C X, BUI H T, et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean[J]. BMC Plant Biology, 2019, 19(1): 311.
[12]LI L Y, WANG X L, GAI J Y, et al. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean[J]. DNA Sequence, 2008, 19(1): 28-36.
[13]WANG G L, XU Y N. Hypocotyl-based agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference[J]. Plant Cell Reports, 2008, 27(7): 1177-1184.
[14]ZHANG L, YANG X D, ZHANG Y Y, et al. Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing[J]. International Journal of Genomics, 2014, 2014: 921950.
[15]YANG J, XING G J, NIU L, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B[J]. Transgenic Research, 2018, 27(2): 155-166.
[16]侯智红,吴艳,程群,等. 利用CRISPR/Cas9技术创制大豆高油酸突变系[J]. 作物学报, 2019, 45(6): 839-847.
[17]OLHOFT P M, DONOVAN C M, SOMERS D A. Soybean (Glycine max) transformation using mature cotyledonary node explants[J]. Methods in Molecular Biology, 2006, 343: 385.
[18]昝光敏,张玲,张延瑞,等. 大豆籽粒脂肪酸组分气相色谱检测方法的建立[J]. 中国农学通报, 2021, 37(9): 118-124.
[19]CHANG N W, HUANG P C. Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations[J]. Lipids, 1998, 33(5): 481-487.
[20]WILLIAMS M J A, SUTHERLAND W H F, MCCORMICK M P, et al. Impaired endothelial function following a meal rich in used cooking fat[J]. Journal of the American College of Cardiology, 1999, 33(4): 1050-1055.
[21]赵静娟,张晓静,李凌云,等. 全球作物基因组编辑技术研发态势及最新研究进展[J].江苏农业科学,2022,50(18):250-257.
[22]李丹,周鸣鸣,何正义,等. 同源臂长度对CRISPR/Cas9介导hLF基因打靶山羊β-乳球蛋白位点效率的影响[J]. 南方农业学报,2022,53(1):182-190.
[23]夏雄飞,潘俊良,韩长志. CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J]. 江苏农业科学,2022,50(12):22-27.
[24]施季森. CRISPR:从“盲盒”基因编辑到“精准靶向”基因组编辑的未竟之旅[J]. 南京林业大学学报(自然科学版),2021,45(6):12-14.
[25]朱丽珍,王芳,王娅丽,等. 基因编辑技术及CRISPR/Cas系统在草地植物开发中的应用[J]. 江苏农业科学,2021,49(20):22-30.
[26]孙佳彤,国艳娇,李爽,等. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版),2021,45(6):15-23.
[27]侯静,毛金燕,翟惠,等. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版),2021,45(6):24-30.
[28]王倩,赵俊桃,陈聪,等. CRISPR/Cas系统在生物核酸检测中的应用进展[J]. 生物加工过程,2022,20(6):597-607,636.
[29]黄秋艳,杨烨城,张昆丽,等. 基于CRISPR/Cas9技术构建STING基因敲除猪肺泡巨噬细胞系及其对Ⅰ型干扰素转录的影响[J]. 南方农业学报,2022,53(4):891-898.
[30]JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
[31]GOETTEL W, ZHANG H Y, LI Y, et al. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean[J]. Nature Communications, 2022, 13(1): 3051.
[32]CAI Z D, XIAN P Q, CHENG Y B, et al. CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6[J]. Plant Biotechnology Journal, 2021, 19(10): 1898-1900.
[33]LU S J, DONG L D, FANG C, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication[J]. Nature Genetics, 2020, 52(4): 428-436.
[34]YU T F, LIU Y, FU J D, et al. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance[J]. Plant Biotechnology Journal, 2021, 19(12): 2589-2605.
[35]HEPPARD E P, KINNEY A J, STECCA K L, et al. Developmental and growth temperature regulation of two different microsomal[omega]-6 desaturase genes in soybeans[J]. Plant Physiology, 1996, 110(1): 311-319.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(02):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(02):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(02):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(02):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(02):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(02):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
 CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(02):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[10]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
 ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]

备注/Memo

备注/Memo:
收稿日期:2022-10-11 基金项目:国家重点研发计划项目(2018YFE0112200);江苏省重点研发计划(现代农业)项目(BE2019376);江苏省种业振兴“揭榜挂帅”项目[JBGS(2021)060];江苏省自然科学基金项目(BK20210154) 作者简介:张威(1990-),男,江苏徐州人,博士,助理研究员 主要从事大豆品质育种质研究。(E-mail)20220015@jaas.ac.cn 通讯作者:陈华涛, (E-mail) cht@jaas.ac.cn
更新日期/Last Update: 2023-05-12