[1]王泽平,沈婕,赵为民,等.热应激对猪颗粒细胞蛋白质表达谱的影响[J].江苏农业学报,2022,38(06):1569-1577.[doi:doi:10.3969/j.issn.1000-4440.2022.06.015]
 WANG Ze-ping,SHEN Jie,ZHAO Wei-min,et al.Effects of heat stress on protein expression profiles in porcine granulosa cells[J].,2022,38(06):1569-1577.[doi:doi:10.3969/j.issn.1000-4440.2022.06.015]
点击复制

热应激对猪颗粒细胞蛋白质表达谱的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1569-1577
栏目:
畜牧兽医·水产养殖
出版日期:
2022-12-31

文章信息/Info

Title:
Effects of heat stress on protein expression profiles in porcine granulosa cells
作者:
王泽平1沈婕23赵为民2付言峰2李碧侠2任守文2程金花2李辉2
(1.江苏省农业科学院宿迁市农业科学研究所,江苏宿迁223800;2.江苏省农业科学院畜牧研究所,江苏南京210014;3.广西大学动物科学技术学院,广西南宁530005)
Author(s):
WANG Ze-ping1SHEN Jie23ZHAO Wei-min2FU Yan-feng2LI Bi-xia2REN Shou-wen2CHENG Jin-hua2LI Hui2
(1.Suqian Institute of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Suqian 223800,China;2.Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014,China;3.College of Animal Science and Technology, Guangxi University, Nanning 530005,China)
关键词:
同位素标记相对和绝对定量(iTRAQ)热应激颗粒细胞
Keywords:
isobaric tags for relative and absolute quantification (iTRAQ)pigheat stressgranulosa cell
分类号:
S828
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.015
文献标志码:
A
摘要:
为系统探究热应激对猪颗粒细胞蛋白质表达的影响,本研究将分离培养的猪颗粒细胞分别在37 ℃(对照组)和41 ℃(热应激组)处理后,用同位素标记相对和绝对定量(iTRAQ)技术对细胞的蛋白质差异表达情况进行分析,并对差异表达蛋白质进行GO功能注释和KEGG通路分析。本研究共鉴定到5 451个蛋白质,差异表达蛋白质289个,其中上调表达蛋白质162个,下调表达蛋白质127个。对筛选出的差异表达蛋白质进行KEGG通路分析发现,差异表达蛋白质主要富集到蛋白质加工、胞吞、RNA降解、氧化磷酸化、嘌呤代谢、泛素化蛋白质降解、次级代谢产物的生物合成、糖酵解/糖异生以及胞间紧密连接等信号通路中。说明这些差异表达蛋白质及其富集的通路可能参与热应激对猪颗粒细胞功能影响的过程中。因此,本研究结果为深入了解热应激导致母猪繁殖障碍的分子机理提供了参考。
Abstract:
To systematically investigate the influence of heat stress on protein expression of porcine granulosa cells, isolated porcine granulosa cells were treated at 37 ℃ (control group) and 41 ℃ (heat stress group) in vitro. Subsequently, isobaric tags for relative and absolute quantification (iTRAQ) technique was used to analyze differentially expressed proteins in cells, and all the differentially expressed proteins were further analyzed by GO functional annotation and KEGG pathway analysis. The results showed that, a total of 5 451 proteins were identified, in which 289 were differentially expressed proteins. Among the differentially expressed proteins, 162 were up-regulated and 127 were down-regulated. Results of KEGG pathway analysis on the screened differentially expressed proteins showed that, they mainly gathered into signal pathways such as protein processing, endocytosis, RNA degradation, oxidative phosphorylation, purine metabolism, ubiquitin mediated proteolysis, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and intercellular tight junction. The results indicated that, the differentially expressed proteins and their enriched pathways may be involved in the process in which porcine granulosa cells functions were influenced by heat stress. Therefore, the results of this study can provide reference for in-depth understanding of the molecular mechanisms for heat stress-induced porcine reproductive failure.

参考文献/References:

[1]袁雄坤,姜丽丽,陶诗煜,等. 母猪热应激敏感指标体系的研究进展[J]. 中国农业科学, 2020, 53(22):4691-4699.
[2]QUINIOU N,NOBLET J. Influence of high ambient temperatures on performance of multiparous lactating sows[J]. J Anim Sci, 1999, 77(8):2124-2134.
[3]WILLIAMS, A M, SAFRANSKI T J, SPIERS D E, et al. Effects of a controlled heat stress during late gestation, lactation, and after weaning on thermoregulation, metabolism, and reproduction of primiparous sows[J]. J Anim Sci, 2013, 91(6):2700-2714.
[4]DE R F,SCARAMUZZI R J. Heat stress and seasonal effects on reproduction in the dairy cow-a review[J]. Theriogenology, 2003, 60(6):1139-1151.
[5]JOHNSTON L J, ELLIS M, LIBAL G W,et al. Effect of room temperature and dietary amino acid concentration on performance of lactating sows. NCR-89 Committee on Swine Management[J]. J Anim Sci, 1999, 77(7):1638-1644.
[6]RENAUDEAU D, QUINIOU N, NORBLET J. Effects of exposure to high ambient temperature and dietary protein level on performance of multiparous lactating sows[J]. J Anim Sci, 2001, 79(5):1240-1249.
[7]UYAR A, TORREALDAY S, SELI E. Cumulus and granulosa cell markers of oocyte and embryo quality[J]. Fertil Steril, 2013, 99(4):979-997.
[8]GUAN, H Y, HE X X, CHEN X Y, et al. Toll-like receptor 4 inhibits estradiol secretion via NF-κB signaling in human granulosa Cells[J]. Front Endocrinol (Lausanne), 2021,12:629554-629565.
[9]LI H, GUO S S, CAI L P, et al. Lipopolysaccharide and heat stress impair the estradiol biosynthesis in granulosa cells via increase of HSP70 and inhibition of smad3 phosphorylation and nuclear translocation[J]. Cell Signal, 2017,30:130-141.
[10]QU X, YAN L Y, GUO R H, et al. ROS-induced GATA4 and GATA6 downregulation inhibits StAR expression in LPS-treated porcine granulosa-lutein Cells[J]. Oxid Med Cell Longev, 2019,2019:792-802.
[11]SHIMIZU T,OHSHIMA I, MANABU O, et al. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells[J]. Reproduction, 2005, 129(4):463-472.
[12]果双双. LPS和热应激对猪颗粒细胞的影响及HSP70参与调控机制的研究[D]. 泰安:山东农业大学,2016.
[13]曲小露,施振旦,李辉. 一种优化的猪卵泡颗粒细胞分离方法及验证[J]. 江苏农业科学, 2019,47(23):190-194.
[14]HUBER E, NOTARO U S, RECCE S,et al. Fetal programming in dairy cows: effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions[J]. Anim Reprod Sci, 2020, 216:106348-106356.
[15]SIROTKIN A V, BAUER M.Heat shock proteins in porcine ovary: synthesis, accumulation and regulation by stress and hormones[J]. Cell Stress Chaperones, 2011, 16(4): 379-387.
[16]WOLFENSON D, LEW B J, THATCHER W W, et al. Seasonal and acute heat stress effects on steroid production by dominant follicles in cows[J]. Anim Reprod Sci, 1997, 47(1/2):9-19.
[17]WOLFENSON D, SONEGO H, BLOCH A, et al. Seasonal differences in progesterone production by luteinized bovine thecal and granulosa cells[J]. Domest Anim Endocrinol, 2002, 22(2):81-90.
[18]KAHL S, ELASASSER T H, RHOADS R P, et al. Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers[J]. Domest Anim Endocrinol, 2015,52:43-50.
[19]KAMAL R, TRIVENI D, MANJUNATH P, et al. Heat stress and effect of shade materials on hormonal and behavior response of dairy cattle: a review[J]. Trop Anim Health Prod, 2018, 50(4):701-706.
[20]MCBRIDE M L, SANCHEZ N C, CARROLL J A, et al. Response to adrenocorticotropic hormone or corticotrophin-releasing hormone and vasopressin in lactating cows fed an immunomodulatory supplement under thermoneutral or acute heat stress conditions[J]. J Dairy Sci, 2020, 103(7):6612-6626.
[21]MALOYAN A, HOROWITZ M. beta-Adrenergic signaling and thyroid hormones affect HSP72 expression during heat acclimation[J]. J Appl Physiol, 2002, 93(1):107-115.
[22]JOHNSON J S, FERNANDEZ M V, SEIBERT J T, et al. In utero heat stress increases postnatal core body temperature in pigs[J]. J Anim Sci, 2015, 93(9):4312-4322.
[23]VIRANT-KLUN I, BACER-KERMAVNER L, TOMAZEVIC T, et al. Slow oocyte freezing and thawing in couples with no sperm or an insufficient number of sperm on the day of in vitro fertilization[J]. Reprod Biol Endocrinol, 2011, 9:19-27.
[24]VABULAS R M, RAYCHAUDHURI S, HAYER-HARTL M, et al. Protein folding in the cytoplasm and the heat shock response[J]. Cold Spring Harb Perspect Biol, 2010, 2(12):4390-4408.
[25]SOKOLOV S S, BALAKIREVA A V, MARKOVA O V, et al. Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it[J]. Biochemistry (Mosc), 2015, 80(5):559-564.
[26]RIGOULET M, BOUCHEZ C L, PAUMARD P, et al. Cell energy metabolism: an update[J]. Biochim Biophys Acta Bioenerg, 2020, 1861(11):276-286.
[27]YIN C, LIU J, HE B, et al. Heat stress induces distinct responses in porcine cumulus cells and oocytes associated with disrupted gap junction and trans-zonal projection colocalization[J]. J Cell Physiol, 2019, 234(4):4787-4798.
[28]QU X, GUO S S, YAN L Y, et al. TNFα-Erk1/2 signaling pathway-regulated SerpinE1 and SerpinB2 are involved in lipopolysaccharide-induced porcine granulosa cell proliferation[J]. Cell Signal, 2020, 73:702-713.

相似文献/References:

[1]丁 威,邢 军,魏全伟,等.二花脸猪卵巢卵泡形成和早期发育过程中雌二醇和孕酮含量变化及其受体定位[J].江苏农业学报,2016,(02):383.[doi:10.3969/j.issn.1000-4440.2016.02.023]
 DING Wei,XING Jun,WEI Quan-wei,et al.Changes in concentrations of estrodiol and progesterone during ovarian follicular development and localization of ovarian estradiol receptor(ER)and progesterone receptor(PR)in the fetal and neonatal Erhualian swines[J].,2016,(06):383.[doi:10.3969/j.issn.1000-4440.2016.02.023]
[2]李辉,果双双,孟春花,等.猪髓样细胞触发因子1CDR区的克隆、表达及生物活性[J].江苏农业学报,2016,(05):1100.[doi:10.3969/j.issn.1000-4440.2016.05.023]
 LI Hui,GUO Shuang-shuang,MENG Chun-hua,et al.Cloning and expression of the CDR area from swine triggering receptor expressed on myeloid cells 1 and its bioactivity[J].,2016,(06):1100.[doi:10.3969/j.issn.1000-4440.2016.05.023]
[3]李碧侠,赵芳,任守文,等.SIRT1 基因对猪卵巢颗粒细胞中生殖激素受体基因表达量的影响[J].江苏农业学报,2016,(01):123.[doi:10.3969/j.issn.1000-4440.2016.01.019 ]
 LI Bi-xia,ZHAO Fang,REN Shou-wen,et al.Role of SIRT1 gene in expression of reproductive hormone receptor genes in porcine ovarian granulosa cells[J].,2016,(06):123.[doi:10.3969/j.issn.1000-4440.2016.01.019 ]
[4]李文良,毛立,杨蕾蕾,等.稳定表达猪Viperin 的 PK-15 细胞系的构建与鉴定[J].江苏农业学报,2016,(01):128.[doi:10.3969/j.issn.1000-4440.2016.01.020]
 LI Wen-liang,MAO Li,YANG Lei-lei,et al.Construction and identification of PK-15 cell line stably expressing porcine Viperin[J].,2016,(06):128.[doi:10.3969/j.issn.1000-4440.2016.01.020]
[5]陈哲,雷明明,于建宁,等.猪RELMβ基因启动子区克隆及序列分析[J].江苏农业学报,2015,(05):1060.[doi:doi:10.3969/j.issn.1000-4440.2015.05.018]
 CHEN Zhe,LEI Ming-ming,YU Jian-ning,et al.Cloning and sequence analysis of promoter region of porcine RELMβ gene[J].,2015,(06):1060.[doi:doi:10.3969/j.issn.1000-4440.2015.05.018]
[6]彭中友,孙俊铭,李燕,等.GDF9和FST调控猪卵母细胞成熟和胚胎早期发育[J].江苏农业学报,2015,(03):583.[doi:10.3969/j.issn.1000-4440.2015.03.019]
 PENG Zhong-you,SUN Jun-ming,LI Yan,et al.Growth differentiation factor 9 and follistatin regulating porcine oocyte maturation and early embryo development[J].,2015,(06):583.[doi:10.3969/j.issn.1000-4440.2015.03.019]
[7]付言峰,李兰,Robert V. Knox,等.猪脂肪沉积和胚胎附植期FTO基因的表达及碱基突变检测[J].江苏农业学报,2018,(03):591.[doi:doi:10.3969/j.issn.1000-4440.2018.03.016]
 FU Yan-feng,LI Lan,ROBER V. Knox,et al.Detection of FTO expression and SNPs during fat deposition and embryo implantation in pigs[J].,2018,(06):591.[doi:doi:10.3969/j.issn.1000-4440.2018.03.016]
[8]江凯,罗海波,姜丽,等.基于iTRAQ技术的采后乙烯利和1-甲基环丙烯处理对茭白线粒体蛋白质表达谱的影响[J].江苏农业学报,2019,(01):173.[doi:doi:10.3969/j.issn.1000-4440.2019.01.025]
 JIANG Kai,LUO Hai-bo,JIANG Li,et al.Effect of postharvest ethylene and 1-methylcyclopropene treatments on protein profile in Zizania latifolia mitochondria based on iTRAQ labeling technique[J].,2019,(06):173.[doi:doi:10.3969/j.issn.1000-4440.2019.01.025]
[9]赵为民,方晓敏,涂枫,等.猪单核源性巨噬细胞受FSL-1刺激后lncRNAs的鉴定与特征分析[J].江苏农业学报,2019,(02):346.[doi:doi:10.3969/j.issn.1000-4440.2019.02.015]
 ZHAO Wei-min,FANG Xiao-min,TU Feng,et al.Identification and characterization of lncRNA in porcine monocyte-derived macrophage stimulated by FSL-1[J].,2019,(06):346.[doi:doi:10.3969/j.issn.1000-4440.2019.02.015]
[10]赵为民,涂枫,王丽,等.猪PKM2基因在肺炎支原体感染3D4/21细胞后的互作蛋白质鉴定与分析[J].江苏农业学报,2019,(06):1381.[doi:doi:10.3969/j.issn.1000-4440.2019.06.016]
 ZHAO Wei-min,TU Feng,WANG Li,et al.Identification and analysis of interaction proteins of porcine PKM2 gene in 3D4/21 cells during Mycoplasma pneumoniae infection[J].,2019,(06):1381.[doi:doi:10.3969/j.issn.1000-4440.2019.06.016]

备注/Memo

备注/Memo:
收稿日期:2022-01-24基金项目:宿迁市自然科学资金项目(K202108);江苏省自然科学基金项目(BK20211140)作者简介:王泽平(1995-),女,安徽宿州人,硕士,研究实习员,主要从事动物疫病病理与生物防治研究。(E-mail)779039471@qq.com通讯作者:李辉, (E-mail)lhlydk@126.com
更新日期/Last Update: 2023-01-13