参考文献/References:
[1]LIU L, WHITE M J, MACRAE T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. European Journal of Biochemistry, 1999, 262(2): 247-257.
[2]LIU M, CHANG W, FAN Y H, et al. Genome-wide identification and characterization of NODULE-INCEPTION-Like protein (NLP) family genes in Brassica napus[J]. International Journal of Molecular Sciences, 2018, 19(8): 2270.
[3]LIU M Y, ZHI X N, WANG Y, et al. Genome-wide survey and expression analysis of NIN-like protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato[J]. BMC Plant Biology, 2021, 21(1): 347.
[4]KUMAR A, BATRA R, GAHLAUT V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.)[J]. PLoS One, 2018, 13(12): e208409.
[5]MU X H, LUO J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764.
[6]SCHAUSER L, WIELOCH W, STOUGAARD J. Evolution of NIN-Like proteins in Arabidopsis, rice, and Lotus japonicus[J]. Journal of Molecular Evolution, 2005, 60(2): 229-237.
[7]KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4(1): 783-798.
[8]CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. Plant Journal, 2009, 57(3): 426-435.
[9]HU B, JIANG Z, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413.
[10]ISABEL F, SEBASTIAN M, FRANCISCA P D, et al. Nitrate signaling and the control of Arabidopsis growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 112-118.
[11]SCHAUSER L, ROUSSIS A, STILLER J, et al. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758): 191-195.
[12]SOYANO T, SHIMODA Y, HAYASHI M. Nodule inception antagonistically regulates gene expression with nitrate in Lotus japonicus[J]. Plant and Cell Physiology, 2015, 56(2): 368-376.
[13]CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.
[14]GE M, WANG Y C, LIU Y H, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. Plant Journal, 2020, 102(2): 353-368.
[15]KONISHI M, YANAGISAWA S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90.
[16]SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science′s STKE: Signal Transduction Knowledge Environment, 2007, 401:re6.
[17]KONISHI M, YANAGISAWA S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression[J]. Journal of Experimental Botany, 2014, 65(19): 5589-5600.
[18]GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.
[19]王 寻,陈西霞,李宏亮,等. 苹果NLP(Nin-Like Protein)转录因子基因家族全基因组鉴定及表达模式分析[J]. 中国农业科学,2019, 52(23): 4333-4349.
[20]LIN J S, LI X L, LUO Z P, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942.
[21]朱满喜,张玉荣,杨雅舒,等. 藜麦NLP转录因子家族的鉴定及表达分析[J]. 华北农学报, 2021, 36(4): 37-46.
[22]吴翔宇,许志茹,曲春浦,等. 毛果杨NLP基因家族生物信息学分析与鉴定[J]. 植物研究, 2014, 34(1): 37-43.
[23]李晨阳,孔祥强,董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982-993.
[24]LIU J Y, BISSELING T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis[J]. Genes, 2020, 11(7): 777.
[25]CHLOE M, FTAN O R, Loren C, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4(1): 859-868.
[26]LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.
[27]KROUK G. Nitrate signalling: calcium bridges the nitrate gap[J]. Nat Plants, 2017, 3: 17095.
[28]RIVERAS E, ALVAREZ J M, VIDAL E A, et al. The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis[J]. Plant Physiol, 2015, 169(2): 1397-1404.
[29]HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.
[30]WANG M Y, HASEGAWA T, BEIER M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutantssupplied with nitrate[J]. Plant Cell Physiol, 2021, 62(7):1156-1167.
[31]UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes[J]. Plant Journal, 2020, 102(3): 448-466.
[32]HU B, CHU C C. Nitrogen-phosphorus interplay: old story with molecular tale[J]. New Phytologist, 2020, 225(4): 1455-1460.
[33]RUBIO V, LINHARES F, SOLANO R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15(16): 2122-2133.
[34]ZHOU J, JIAO F C, WU Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673-1686.
[35]BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J]. PLoS Genetics, 2010, 6(9): e1001102.
[36]DUAN K, YI K K, DANG L, et al. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant Journal, 2008, 54(6): 965-975.
[37]LV Q D, ZHONG Y J, WANG Y G, et al. SPX4 Negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4): 1586-1597.
[38]PUGA M I, MATEOS I, CHARUKESI R, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14947-14952.
[39]UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes[J]. The Plant Journal, 2020, 102(3): 448-466.
[40]MAEDA Y, KONISHI M, KIBA T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9(1): 153-182.
[41]NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67.
[42]LISZA D, EHSAN K, DAWEI Y, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(3): 150-157.
[43]YAN D, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7(1): 60-78.
[44]DUERMEYER L, KHODAPANAHI E, YAN D, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(S1): 150-157.
[45]OKAMOOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol, 2006, 141(1): 97-107.
[46]FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. Plant Journal, 2013, 74(6): 1003-1015.
[47]NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499.
[48]WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[49]Fan X R, NAZ M, Fan X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.
[50]TAKEO S, SHUGO M, MINEKO K, et al. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 483(1): 380-386.
[51]GUAN P Z, RIPOLL J J, WANG R H, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.
[52]YU L H, WU J, TANG H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795.
[53]GUAN P Z, WANG R C, NACRY P, et al. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15267-15272.
[54]LI C, POTUSCHAK T, COLON-CARMONA A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12978-12983.
[55]RUBIO V, BUSTOS R, IRIGOYEN M L, et al. Plant hormones and nutrient signaling[J]. Plant Molecular Biology, 2009, 69(4): 361-373.
[56]MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517.
[57]MA W Y, LI J J, QU B Y, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant Journal, 2014, 78(1): 70-79.
[58]ZHANG T T, KANG H, FU L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2[J]. Plant Science, 2021, 303: 110771.
[59]葛敏,王元琮,宁丽华,等. 氮响应转录因子Zm NLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 796-802.
[60]HACHIYA T, UEDA N, KITAGAWAi M, et al. Arabidopsis root-type ferredoxin: NADP(H) Oxidoreductase 2 is involved in detoxification of nitrite in roots[J]. Plant and Cell Physiology, 2016, 57(11): 2440-2450.
[61]ALFATIH A, WU J, ZHANG Z S, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042.
[62]BARBULOVA A, ROGATO A, D′APUZZO E, et al. Differential effects of combined N sources on early steps of the nod factor-dependent transduction pathway in Lotus japonicus[J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 994-1003.
[63]MARSH J F, RAKOCEVIC A, MITRA R M, et al. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase[J]. Plant Physiology, 2007, 144(1): 324-335.
[64]VERNIE T, KIM J, FRANCES L, et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the medicago truncatula root[J]. Plant Cell, 2015, 27(12): 3410-3424.
[65]LEBEDEVA M, AZARAKHSH M, YASHENKOVA Y, et al. Nitrate-induced CLE peptide systemically inhibits nodulation in medicago truncatula[J]. Plants-Basel, 2020, 9(11): 1456.
[66]MENS C, HASTWELL A H, SU H, et al. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation[J]. New Phytologist, 2021, 229(5): 2525-2534.
[67]LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula[J]. Plant Communications, 2021, 2(3): 100183.
[68]NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nat Commun, 2018, 9(1): 499.
[69]JAGADHESAN B, SATHEE L, MEENA H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports, 2020, 10(1): 9368.
[70]WU J, ZHANG Z S, XIA J Q, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461.
[71]YU J, XUAN W, TIAN Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176.
[72]CAO H R, QI S D, SUN M W, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.
[73]曹雄军,卢晓鹏,熊江,等. 枳NLP转录因子克隆及其在不同水分条件下的表达[J]. 中国农业科学, 2016, 49(2): 381-390.
[74]ZHANG Z H, HU B, CHU C C. Towards understanding the hierarchical nitrogen signalling network in plants[J]. Current Opinion in Plant Biology, 2020, 55: 60-65.