[1]何炫颐,王可欣,董月华,等.植物NLP转录因子研究进展[J].江苏农业学报,2022,38(03):830-836.[doi:doi:10.3969/j.issn.1000-4440.2022.03.031]
 HE Xuan-yi,WANG Ke-xin,DONG Yue-hua,et al.Research progress on plant NLP transcription factors[J].,2022,38(03):830-836.[doi:doi:10.3969/j.issn.1000-4440.2022.03.031]
点击复制

植物NLP转录因子研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年03期
页码:
830-836
栏目:
综述
出版日期:
2022-06-30

文章信息/Info

Title:
Research progress on plant NLP transcription factors
作者:
何炫颐1王可欣1董月华1 习向银1 杨怀玉12
(1.西南大学资源环境学院,重庆400716;2.西南大学长江经济带农业绿色发展研究中心,重庆400716)
Author(s):
HE Xuan-yi1WANG Ke-xin1DONG Yue-hua1XI Xiang-yin1YANG Huai-yu12
(1.College of Resources and Environment, Southwest University,Chongqing 400716,China;2.Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University,Chongqing 400716,China)
关键词:
NLP转录因子氮磷养分植物生长发育胁迫应答
Keywords:
NLP transcription factornitrogen and phosphorus nutrientsgrowth and development of plantsstress response
分类号:
Q74
DOI:
doi:10.3969/j.issn.1000-4440.2022.03.031
文献标志码:
A
摘要:
转录因子NLP (NIN-like protein)是近年来发现的具有调控养分吸收和植物生长发育、响应外界环境胁迫等功能的植物特异性转录因子。本文对近年来有关NLP家族的最新研究成果进行了总结,综述了植物NLP家族的结构和分类、对氮磷养分信号通路的调控、参与植物生长发育过程以及胁迫应答方面的研究进展,并展望了NLP的可能研究热点和领域,以期为后续研究提供参考。
Abstract:
Transcription factor NLP (NIN-like protein) is a plant-specific transcription factor identified in recent years, which has multiple functions in regulating nutrient uptake, growth and development, as well as response to external environmental stresses of plants. In this review, we summarized the latest research achievements on plant NLP family, including research progresses on the structure and classification, regulation of nitrogen and phosphorus nutrients signal pathways, participation in plant growth and development, and stress response in recent years. Meanwhile, possible hot research topics and fields of NLP were proposed, which may provide reference for further researches.

参考文献/References:

[1]LIU L, WHITE M J, MACRAE T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. European Journal of Biochemistry, 1999, 262(2): 247-257.
[2]LIU M, CHANG W, FAN Y H, et al. Genome-wide identification and characterization of NODULE-INCEPTION-Like protein (NLP) family genes in Brassica napus[J]. International Journal of Molecular Sciences, 2018, 19(8): 2270.
[3]LIU M Y, ZHI X N, WANG Y, et al. Genome-wide survey and expression analysis of NIN-like protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato[J]. BMC Plant Biology, 2021, 21(1): 347.
[4]KUMAR A, BATRA R, GAHLAUT V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.)[J]. PLoS One, 2018, 13(12): e208409.
[5]MU X H, LUO J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764.
[6]SCHAUSER L, WIELOCH W, STOUGAARD J. Evolution of NIN-Like proteins in Arabidopsis, rice, and Lotus japonicus[J]. Journal of Molecular Evolution, 2005, 60(2): 229-237.
[7]KONISHI M, YANAGISAWA S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4(1): 783-798.
[8]CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis[J]. Plant Journal, 2009, 57(3): 426-435.
[9]HU B, JIANG Z, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413.
[10]ISABEL F, SEBASTIAN M, FRANCISCA P D, et al. Nitrate signaling and the control of Arabidopsis growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 112-118.
[11]SCHAUSER L, ROUSSIS A, STILLER J, et al. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758): 191-195.
[12]SOYANO T, SHIMODA Y, HAYASHI M. Nodule inception antagonistically regulates gene expression with nitrate in Lotus japonicus[J]. Plant and Cell Physiology, 2015, 56(2): 368-376.
[13]CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.
[14]GE M, WANG Y C, LIU Y H, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. Plant Journal, 2020, 102(2): 353-368.
[15]KONISHI M, YANAGISAWA S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90.
[16]SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science′s STKE: Signal Transduction Knowledge Environment, 2007, 401:re6.
[17]KONISHI M, YANAGISAWA S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression[J]. Journal of Experimental Botany, 2014, 65(19): 5589-5600.
[18]GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.
[19]王 寻,陈西霞,李宏亮,等. 苹果NLP(Nin-Like Protein)转录因子基因家族全基因组鉴定及表达模式分析[J]. 中国农业科学,2019, 52(23): 4333-4349.
[20]LIN J S, LI X L, LUO Z P, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942.
[21]朱满喜,张玉荣,杨雅舒,等. 藜麦NLP转录因子家族的鉴定及表达分析[J]. 华北农学报, 2021, 36(4): 37-46.
[22]吴翔宇,许志茹,曲春浦,等. 毛果杨NLP基因家族生物信息学分析与鉴定[J]. 植物研究, 2014, 34(1): 37-43.
[23]李晨阳,孔祥强,董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982-993.
[24]LIU J Y, BISSELING T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis[J]. Genes, 2020, 11(7): 777.
[25]CHLOE M, FTAN O R, Loren C, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4(1): 859-868.
[26]LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.
[27]KROUK G. Nitrate signalling: calcium bridges the nitrate gap[J]. Nat Plants, 2017, 3: 17095.
[28]RIVERAS E, ALVAREZ J M, VIDAL E A, et al. The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis[J]. Plant Physiol, 2015, 169(2): 1397-1404.
[29]HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.
[30]WANG M Y, HASEGAWA T, BEIER M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutantssupplied with nitrate[J]. Plant Cell Physiol, 2021, 62(7):1156-1167.
[31]UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes[J]. Plant Journal, 2020, 102(3): 448-466.
[32]HU B, CHU C C. Nitrogen-phosphorus interplay: old story with molecular tale[J]. New Phytologist, 2020, 225(4): 1455-1460.
[33]RUBIO V, LINHARES F, SOLANO R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15(16): 2122-2133.
[34]ZHOU J, JIAO F C, WU Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673-1686.
[35]BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J]. PLoS Genetics, 2010, 6(9): e1001102.
[36]DUAN K, YI K K, DANG L, et al. Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant Journal, 2008, 54(6): 965-975.
[37]LV Q D, ZHONG Y J, WANG Y G, et al. SPX4 Negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4): 1586-1597.
[38]PUGA M I, MATEOS I, CHARUKESI R, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14947-14952.
[39]UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of SPX genes[J]. The Plant Journal, 2020, 102(3): 448-466.
[40]MAEDA Y, KONISHI M, KIBA T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9(1): 153-182.
[41]NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67.
[42]LISZA D, EHSAN K, DAWEI Y, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(3): 150-157.
[43]YAN D, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis[J]. Nature Communications, 2016, 7(1): 60-78.
[44]DUERMEYER L, KHODAPANAHI E, YAN D, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(S1): 150-157.
[45]OKAMOOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol, 2006, 141(1): 97-107.
[46]FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. Plant Journal, 2013, 74(6): 1003-1015.
[47]NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499.
[48]WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.
[49]Fan X R, NAZ M, Fan X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.
[50]TAKEO S, SHUGO M, MINEKO K, et al. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2017, 483(1): 380-386.
[51]GUAN P Z, RIPOLL J J, WANG R H, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.
[52]YU L H, WU J, TANG H, et al. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795.
[53]GUAN P Z, WANG R C, NACRY P, et al. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15267-15272.
[54]LI C, POTUSCHAK T, COLON-CARMONA A, et al. Arabidopsis TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12978-12983.
[55]RUBIO V, BUSTOS R, IRIGOYEN M L, et al. Plant hormones and nutrient signaling[J]. Plant Molecular Biology, 2009, 69(4): 361-373.
[56]MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517.
[57]MA W Y, LI J J, QU B Y, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant Journal, 2014, 78(1): 70-79.
[58]ZHANG T T, KANG H, FU L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2[J]. Plant Science, 2021, 303: 110771.
[59]葛敏,王元琮,宁丽华,等. 氮响应转录因子Zm NLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 796-802.
[60]HACHIYA T, UEDA N, KITAGAWAi M, et al. Arabidopsis root-type ferredoxin: NADP(H) Oxidoreductase 2 is involved in detoxification of nitrite in roots[J]. Plant and Cell Physiology, 2016, 57(11): 2440-2450.
[61]ALFATIH A, WU J, ZHANG Z S, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042.
[62]BARBULOVA A, ROGATO A, D′APUZZO E, et al. Differential effects of combined N sources on early steps of the nod factor-dependent transduction pathway in Lotus japonicus[J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 994-1003.
[63]MARSH J F, RAKOCEVIC A, MITRA R M, et al. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase[J]. Plant Physiology, 2007, 144(1): 324-335.
[64]VERNIE T, KIM J, FRANCES L, et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the medicago truncatula root[J]. Plant Cell, 2015, 27(12): 3410-3424.
[65]LEBEDEVA M, AZARAKHSH M, YASHENKOVA Y, et al. Nitrate-induced CLE peptide systemically inhibits nodulation in medicago truncatula[J]. Plants-Basel, 2020, 9(11): 1456.
[66]MENS C, HASTWELL A H, SU H, et al. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation[J]. New Phytologist, 2021, 229(5): 2525-2534.
[67]LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula[J]. Plant Communications, 2021, 2(3): 100183.
[68]NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nat Commun, 2018, 9(1): 499.
[69]JAGADHESAN B, SATHEE L, MEENA H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports, 2020, 10(1): 9368.
[70]WU J, ZHANG Z S, XIA J Q, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461.
[71]YU J, XUAN W, TIAN Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176.
[72]CAO H R, QI S D, SUN M W, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.
[73]曹雄军,卢晓鹏,熊江,等. 枳NLP转录因子克隆及其在不同水分条件下的表达[J]. 中国农业科学, 2016, 49(2): 381-390.
[74]ZHANG Z H, HU B, CHU C C. Towards understanding the hierarchical nitrogen signalling network in plants[J]. Current Opinion in Plant Biology, 2020, 55: 60-65.

备注/Memo

备注/Memo:
收稿日期:2021-10-25基金项目:西南大学科研启动基金项目(SWU019012);高等学校学科创新引智计划项目(B20053)作者简介:何炫颐(1998-),女,重庆人,硕士研究生,研究方向为植物营养与调控。(E-mail)876816420@qq.com通讯作者:习向银,(E-mail)xixiangyin@126.com;杨怀玉,(E-mail)yanghuaiyu@swu.edu.cn
更新日期/Last Update: 2022-07-07