参考文献/References:
[1]SUCHY A K, GROFFMAN P M, BAND L E, et al. A landscape approach to nitrogen cycling in urban lawns reveals the interaction between topography and human behaviors [J]. Biogeochemistry, 2021,152(1):1-20.
[2]王芳君,桑倩倩,邓颖,等. 磁性铁基改性生物质炭去除水中氨氮[J].环境科学,2021,42(4): 1913-1922.
[3]徐红超. 秸秆生物质炭在废水脱氮中的应用研究 [D].徐州:中国矿业大学, 2017.
[4]ZHANG X, DUAN P, WU Z, et al. Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil [J]. Science of the Total Environment, 2019, 687:433-440.
[5]王洪媛,盖霞普,翟丽梅,等. 生物质炭对土壤氮循环的影响研究进展[J].生态学报, 2016, 36(19): 5998-6011.
[6]刘领,马宜林,悦飞雪,等. 生物质炭对褐土旱地玉米季氮转化功能基因、丛枝菌根真菌及N2O 释放的影响 [J].生态学报, 2021, 11(7): 1-13.
[7]胡立煌,史文竹,项剑,等. 生物质炭、秸秆和粪肥对滨海盐碱土氮矿化和硝化作用的影响 [J].生态与农村环境学报, 2020, 36(8): 1089-1096.
[8]朱彤,梁启煜,谢元华,等. 厌氧氨氧化过程中无机碳对脱氮效能的影响[J]. 东北大学学报(自然科学版), 2018, 39(2): 278-282,287.
[9]李剑英,姚嘉,肖应辉,等. 生物质炭对土壤固氮微生物的影响研究[J]. 佳木斯大学学报(自然科学版), 2018, 36(5): 750-753.
[10]CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth’s nitrogen cycle [J]. Science, 2010, 330(6001): 192-196.
[11]FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century [J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1621): 20130164.
[12]卢少勇,万正芬,李锋民,等. 29 种湿地填料对氨氮的吸附解吸性能比较[J].环境科学研究, 2016, 29(8): 1187-1194.
[13]李飞跃,谢越,石磊,等. 稻壳生物质炭对水中氨氮的吸附[J]. 环境工程学报, 2015, 9(3): 1221-1226.
[14]马锋锋,赵保卫,刁静茹,等. 牛粪生物质炭对水中氨氮的吸附特性[J].环境科学, 2015, 36(5): 1678-1685.
[15]黄柱坚,朱子骜,吴学深,等. 皇竹草生物炭的结构特征及对重金属吸附作用机制 [J]. 环境化学, 2016, 35(4): 766-772.
[16]魏翔,任洪强,袁粒,等.苯酚对硝化颗粒污泥性能的影响[J].安全与环境学报, 2007, 38(2): 46-48.
[17]JING H P, LI Y, WANG X, et al. Simultaneous recovery of phosphate, ammonium and humic acid from wastewater using a biochar supported Mg(OH)2/bentonite composite[J]. Environmental Science: Water Research & Technology, 2019, 5(5): 931-943.
[18]郝蓉,彭少麟,宋艳暾,等. 不同温度对黑碳表面官能团的影响[J]. 生态环境学报, 2010, 19(3): 528-531.
[19]XIANG W, ZHANG X, CHEN J, et al. Biochar technology in wastewater treatment: A critical review [J]. Chemosphere, 2020, 252:126539.
[20]智燕彩. 复合改性生物质炭对硝态氮吸附及土壤氮素转化的影响[D].北京:中国农业科学院, 2020.
[21]张文,吕欣田,韩睿,等. 2 种改性生物质炭对水体硝态氮的吸附特性[J].生态与农村环境学报, 2018, 34(3): 253-259.
[22]XU D, CAO J, LI Y, et al. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity[J]. Waste Management, 2019, 87:652-660.
[23]吕敏,吴雪双,刘俊怡,等.牛粪炭吸附NH+4的动力学和热力学行为[J].太阳能学报,2020,41(7):26-32.
[24]陈友媛,李培强,李闲驰,等.浒苔生物质炭对雨水径流中氨氮的吸附特性及吸附机制[J].环境科学, 2021, 42(1): 274-282.
[25]邓延慧,崔敏华,陈昊,等.污泥基生物质炭吸附二级出水中氮、磷效能研究[J].环境科技, 2020, 33(4): 18-23.
[26]ZHANG M, GAO B, YAO Y, et al. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 26-32.
[27]王博,叶春,李法云,等. 水生植物制生物质炭对硝态氮的吸附规律研究[J].中国环境科学, 2017, 37(1): 116-122.
[28]李丽,陈旭,吴丹,等. 固定化改性生物质炭模拟吸附水体硝态氮潜力研究[J].农业环境科学学报, 2015, 34(1): 137-143.
[29]SUN Y, QI S, ZHENG F, et al. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge [J]. Bioresource Technology, 2018, 249:57-61.
[30]ZHOU X, WANG X, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresour Technol, 2017,241: 269-275.
[31]ZHANG J, WANG Q. Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia-nitrogen capture[J]. Journal of Cleaner Production, 2016, 112(5): 3927-3934.
[32]CHEN G, ZHANG Z, ZHANG Z, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J]. Science of the Total Environment, 2018, 615(15): 1547-1556.
[33]WU Z S, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: A molecular and electrochemical mechanism.[J]. Bioresource Technology,2019,275: 297-306.
[34]毕墨涵,徐斐,郭富成,等. 响应面优化香蒲生物质炭促进反硝化影响因素 [J]. 环境科学与技术, 2021,44(2): 97-103.
[35]BOCK E, SMITH N, ROGERS M, et al. Enhanced nitrate and phosphate removal in a denitrifying bioreactor with biochar [J]. Journal of Environmental Quality, 2014, 44(2): 605-613.
[36]WU Z, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: A molecular and electrochemical mechanism [J]. Bioresource Technology, 2019, 275:297-306.
[37]王晓辉,郭光霞,郑瑞伦,等. 生物质炭对设施退化土壤氮相关功能微生物群落丰度的影响[J]. 土壤学报, 2013, 50(3): 624-631.
[38]陈重军. 甲鱼养殖废水厌氧氨氧化处理及其微生物机理研究[D].杭州:浙江大学, 2012.
[39]XU J, WU X, ZHU N, et al. Anammox process dosed with biochars for enhanced nitrogen removal: Role of surface functional groups [J]. Science of The Total Environment, 2020, 748(5): 141367.
[40]XU J, LI C, ZHU N, et al. Alleviating the nitrite stress on anaerobic ammonium oxidation by pyrolytic biochar [J]. Science of the Total Environment, 2021, 774:145800.
[41]张星,张晴雯,刘杏认,等. 生物质炭对农田土壤氮素转化关键过程的影响[J].中国农业气象, 2015, 36(6): 709-716.
[42]崔虎,王莉霞,欧洋,等.生物质炭-化肥配施对稻田土壤氮磷迁移转化的影响[J].农业环境科学学报, 2019, 38(2): 412-421.
[43]陈曦,江赜伟,丁洁,等 生物炭施用对节水灌溉稻田土壤氮素含量及脲酶活性的影响 [J]. 江苏农业科学, 2020, 48(19): 268-274.
[44]周志红,李心清,邢英, 等.生物质炭对土壤氮素淋失的抑制作用[J].地球与环境,2011, 39(2): 278-284.
[45]董玉兵,吴震,李博,等.追施生物质炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响[J].植物营养与肥料学报, 2017, 23(5): 1258-1267.
[46]OPDYKE M R, OSTROM N E, OSTROM P H. Evidence for the predominance of denitrification as a source of N2O in temperate agricultural soils based on isotopologue measurements [J]. Global Biogeochemical Cycles, 2009, 23(4): GB4018.
[47]杜莎莎,王朝旭. 氨氧化过程中稻壳生物质炭抑制酸性农田土壤N2O排放[J].中国环境科学, 2020, 40(1): 85-91.
[48]CAYUELA M L, VAN ZWIETEN L, SINGH B P, et al. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis [J]. Agriculture, Ecosystems & Environment, 2014, 191:5-16.
[49]王紫君,王鸿浩,李金秋,等. 椰糠生物质炭对热区双季稻田N2O和CH4排放的影响[J].环境科学, 2021(8): 3931-3942.
[50]何飞飞,荣湘民,梁运姗,等. 生物炭对红壤菜田土理化性质和N2O、CO2排放的影响 [J]. 农业环境科学学报, 2013, 32(9): 1893-1900.
[51]SINGH B P, HATTON B J, SINGH B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils [J]. Journal of Environmental Quality, 2010, 39(4): 1224-1235.
[52]郑华楠,宋晴,朱义,等.芦苇生物质炭复合载体固定化微生物去除水中氨氮[J].环境工程学报, 2019, 13(2): 310-318.
[53]王启全.生物质炭及降解菌剂对污染土壤微生物及功能基因的影响[D].哈尔滨:东北农业大学,2019.
[54]赵光昕,张晴雯,刘杏认,等. 农田土壤硝化反硝化作用及其对生物质炭添加响应的研究进展[J].中国农业气象, 2018, 39(7): 442-452.
[55]LI M, ZHANG J, YANG X, et al. Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil [J]. Journal of Environmental Sciences, 2021, 102:263-272.
[56]梁韵,廖健利,KHALID M,等. 生物质炭与有机肥对菜田土壤氨氧化菌丰度的影响[J]. 上海交通大学学报(农业科学版), 2017, 35(5): 36-43.
[57]张军,周丹丹,吴敏,等. 生物质炭对土壤硝化反硝化微生物群落的影响研究进展[J].应用与环境生物学报, 2018, 24(5): 993-999.
[58]刘杰,韩士群,齐建华,等. 生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报, 2016, 32(1): 106-110.
[59]刘远,朱继荣,吴雨晨,等. 施用生物质炭对采煤塌陷区土壤氨氧化微生物丰度和群落结构的影响[J].应用生态学报, 2017, 28(10): 3417-3423.
[60]武丽君. 生物质炭对农田土壤氮素迁移及氨氧化作用的影响[D].太原:太原理工大学, 2016.
[61]江琳琳. 生物质炭对土壤微生物多样性和群落结构的影响[D].沈阳:沈阳农业大学, 2016.
[62]王先芳,任天志,智燕彩,等. 添加生物质炭改善菜地土壤氨氧化细菌群落并提高净硝化率[J].植物营养与肥料学报, 2020, 26(3): 502-510.
[63]陈晨,许欣,毕智超,等. 生物质炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J].环境科学学报, 2017, 37(5): 1912-1920.
[64]HUI-JUAN X, XIAO-HUI W, HU L, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape [J]. Environmental Science & Technology, 2014, 48(16): 9391-9399.
[65]XIAO Z, RASMANN S, YUE L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis [J]. Science of the Total Environment, 2019, 696: 133984.
[66]BLANCO-JARVIO A, CHáVEZ-LóPEZ C, LUNA-GUIDO M, et al. Denitrification in a chinampa soil of Mexico City as affected by methylparathion: A laboratory study [J]. European Journal of Soil Biology, 2011, 47(5): 271-278.
[67]刘杏认,赵光昕,张晴雯,等. 生物质炭对华北农田土壤 N2O 通量及相关功能基因丰度的影响[J].环境科学, 2018, 39(8): 3816-3825.
[68]XU J, WU X, ZHU N, et al. Anammox process dosed with biochars for enhanced nitrogen removal: Role of surface functional groups [J]. Science of the Total Environment, 2020, 748:141367.
[69]DENG C, HUANG L, LIANG Y, et al. Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics [J]. Science of the Total Environment, 2019, 694:133687.
[70]XU J, LI C, ZHU N, et al. Particle size-dependent behavior of redox-active biochar to promote anaerobic ammonium oxidation (anammox) [J]. Chemical Engineering Journal, 2021, 410:127925.
[71]PAN F, CHAPMAN S J, LI Y, et al. Straw amendment to paddy soil stimulates denitrification but biochar amendment promotes anaerobic ammonia oxidation [J]. Journal of Soils and Sediments, 2017, 17(10): 2428-2437.
[72]CHEN C J, HUANG X X, LEI C X, et al. Improving anammox start-up with bamboo charcoal [J]. Chemosphere, 2012, 89(10): 1224-1229.
[73]严陶韬,高婷,周之栋,等.基于文献计量的生物炭土壤效应分析[J].江苏农业科学,2021,49(4):191-199.
[74]LIU Q, ZHANG Y, LIU B, et al. How does biochar influence soil N cycle? A meta-analysis [J]. Plant and Soil, 2018, 426(1/2): 211-225.
[75]XIAO Z, RASMANN S, YUE L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis [J]. Sci Total Environ, 2019, 696: 133984.