参考文献/References:
[1]LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291.
[2]WARWICK S I, AL-SHEHBAZ I A, SAUDER C A. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA[J]. Canadian Journal of Botany-Revue Canadienne de Botanique, 2006, 84(2): 269-281.
[3]AMTMANN A, BOHNERT H J, BRESSAN R A. Abiotic stress and plant genome evolution. Search for new models[J]. Plant Physiology, 2005, 138(1): 127-130.
[4]BRESSAN R A, ZHANG C, ZHANG H, et al. Learning from the Arabidopsis experience. The next gene search paradigm[J]. Plant Physiology, 2001, 127(4): 1354-1360.
[5]ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.
[6]TAJI T, SEKI M, SATOU M, et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant Physiology, 2004, 135(3): 1697-1709.
[7]PANG Q, CHEN S, DAI S, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research, 2010, 9(5): 2584-2599.
[8]ARBONA V, ARGAMASILLA R, GMEZ-CADENAS A. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress[J]. Journal of Plant Physiology, 2010, 167(16): 1342-1350.
[9]ZHOU Y J, GAO F, LI X F, et al. Alterations in phosphoproteome under salt stress in Thellungiella roots[J]. Chinese Science Bulletin, 2010, 55(32): 3673-3679.
[10]蔡小宁,杨平,贲爱玲,等. 盐芥ThHKT1基因的克隆[J], 江苏农业科学, 2006(6): 21-24.
[11]唐宁,杨平. 盐芥ThHKT1基因的生物信息学分析[J]. 药物生物技术, 2008, 15(6): 449-452.
[12]WU C, GAO X, KONG X Q, et al. Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila[J]. Plant Molecular Biology Reporter, 2009, 27(1): 1-12.
[13]OH D H, GONG Q, ULANOV A, et al. Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line[J]. Journal of Integrative Plant Biology, 2007, 49(10): 1484-1496.
[14]OH D H, LEIDI E, ZHANG Q, et al. Loss of halophytism by interference with SOS1 expression[J]. Plant Physiology, 2009, 151(1): 210-222.
[15]GAO F, GAO Q, DUAN X G, et al. Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance[J]. Journal of Experimental Botany, 2006, 57(12): 3259-3270.
[16]SUN Q H, GAO F, ZHAO L, et al. Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila[J]. BMC Plant Biology, 2010, 10(1): 90.
[17]LV S L, ZHANG K W, GAO Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J]. Plant and Cell Physiology, 2008, 49(8): 1150-1164.
[18]ALEMN F, NIEVES-CORDONES M, MARTNEZ V, et al. Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2009, 65(2/3): 263-269.
[19]高秀华. 盐芥耐盐相关基因的功能研究[D]. 济南: 山东师范大学, 2006.
[20]XU X, ZHOU Y, WEI S, et al. Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophila[J]. Molecules and Cells, 2009, 27(4): 423-428.
[21]WANG X C, CHANG L L, WANG B C, et al. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance[J]. Molecular & Cellular Proteomics, 2013, 12(8): 2174-2195.
[22]CHANG L L, GUO A P, JIN X, et al. The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila[J]. Plant Science, 2015, 236: 223-238.
[23]WANG X C, SHI M J, LU X L, et al. A method for protein extraction from different subcellular fractions of laticifer latex in Hevea brasiliensis compatible with 2-DE and MS[J]. Proteome Science, 2010, 8(1): 35.
[24]BRADFORD M M. A rapid and sensitive method for the quantization of microgram quantities of protein using the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[25]YAN M, LU Z L, LI B, et al. Comparative proteomics reveals new insights into the endosperm responses to drought, salinity and submergence in germinating wheat seeds[J]. Plant Molecular Biology, 2021, 105(3): 287-302.
[26]LI J, CUI J, CHENG D, et al. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots[J]. BMC Plant Biology, 2020, 20(1): 347.
[27]刘爱荣,赵可夫. 盐胁迫对盐芥生长及硝酸还原酶活性的影响[J]. 植物生理与分子生物学学报, 2005, 31(5): 469-476.
[28]KATSCHNIG D, BROEKMAN R, ROZEMA J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology[J]. Environmental and Experimental Botany, 2013, 92: 32-42.
[29]YI X, SUN Y, YANG Q, et al. Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance[J]. Journal of Proteomics, 2014, 99: 84-100.
[30]郭建荣,郑聪聪,李艳迪,等. NaCl处理对真盐生植物盐地碱蓬根系特征及活力的影响[J]. 植物生理学报, 2017, 53(1): 63-70.
[31]GOUSSI R, MANA A, DERBALI W, et al. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea[J]. Journal of Photochemistry and Photobiology B-Biology, 2018, 183: 275-287.
[32]PANG Q, CHEN S, DAI S, et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research, 2010, 9(5): 2584-2599.
[33]LIU Z, ZOU L, CHEN C, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019, 9(1): 9590.
[34]KUMARI M P, SEKAR K. Effect of plant growth regulators on chlorophyll and carotenoid content of salinity stressed okra seedlings[J]. Asian Journal of Horticulture, 2008, 3(1): 54-55.
[35]XING W, WANG J, LIU H, et al. Influence of natural saline-alkalistress on chlorophyll content and chloroplast ultrastructure of two contrasting rice(Oryza sativa L. japonica) cultivars[J]. Australian Journal of Crop Science, 2013, 7(2): 289-292.
[36]SAYYAD-AMIN P, JAHANSOOZ M R, BORZOUEI A, et al. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress[J]. Journal of Biological Physics, 2016, 42(4): 601-620.
[37]SHOOLINGIN-JORDAN P M. Porphobilinogen deaminase and uroporphyrinogen Ⅲ synthase: structure, molecular biology, and mechanism[J]. Journal of Bioenergetics & Biomembranes, 1995, 27(2): 181-195.
[38]ELDER G H, ROBERTS A G. Uroporphyrinogen decarboxylase[J]. Journal of Bioenergetics & Biomembranes, 1995, 27(2): 207-214.
[39]SCHOEFS B, FRANCK F. Protochlorophyllide reduction: mechanisms and evolutions[J]. Photochemistry & Photobiology, 2003, 78(6): 543-557.
[40]ECKHARDT U, GRIMM B, HRTENSTEINER S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants[J]. Plant Molecular Biology, 2004, 56(1): 1-14.
[41]IKEGAMI A, YOSHIMURA N, MOTOHASHI K, et al. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin[J]. Journal of Biological Chemistry, 2007, 282(27): 19282-19291.
[42]PRUZINSK A, TANNER G, ANDERS I, et al. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 15259-15264.
[43]TURAN S, TRIPATHY B C. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings[J]. Physiologia Plantarum, 2015, 153(3): 477-491.
[44]HU L, XIANG L, LI S, et al. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress[J]. Physiologia Plantarum, 2016, 156(4): 468-477.
[45]GONG W, XU F, SUN J, et al. iTRAQ-based comparative proteomic analysis of seedling leaves of two upland cotton genotypes differing in salt tolerance[J]. Frontiers in Plant Science, 2017, 8: 2113.
[46]HILDEBRANDT T M, NUNES NESI A, ARAJO W L, et al. Amino acid catabolism in plants[J]. Molecular Plant, 2015, 8(11): 1563-1579.
[47]HUANG S P, ZENG Y L. Research progress on plant aldehyde dehydrogenase under adversity stresses[J]. Biotechnology Bulletin, 2015, 31(12): 8-14.
[48]HILDEBRANDT T M. Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response[J]. Plant Molecular Biology, 2018, 98(1/2): 121-135.
[49]LIU X, HAN Q, WANG J, et al. Two FgLEU2 genes with different roles in leucine biosynthesis and infection-related morphogenesis in Fusarium graminearum[J]. PLoS One, 2016, 11(11): e0165927.
[50]KOCHEVENKO A, FERNIE A R. The genetic architecture of branched-chain amino acid accumulation in tomato fruits[J]. Journal of Experimental Botany, 2011, 62(11): 3895-3906.
[51]HUANG T, JANDER G. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched chain amino acids in Arabidopsis thaliana[J]. Planta, 2017, 246(4): 737-747.
[52]CHEN D, MA X, LI C, et al. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana[J]. Plant Cell Reports, 2014, 33(11): 1815-1827.
[53]RAMADOSS N, GUPTA D, VAIDYA B N, et al. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance[J]. Biochemical & Biophysical Research Communications, 2018, 503(1): 365-370.
[54]GUO Z, TAN J, ZHUO C, et al. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa sub sp. falcata that confers cold tolerance through up-regulating polyamine oxidation[J]. Plant Biotechnology Journal, 2014, 12(5): 601-612.
[55]KIM S H, KIM S H, PALANIYANDI S A, et al. Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants[J]. Plant Physiology and Biochemistry, 2015,87: 84-91.
[56]MA C, WANG Y, GU D, et al. Overexpression of S-adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress[J]. International Journal of Molecular Sciences, 2017, 18(4): 847.
[57]APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373-399.
[58]MAY M J, VERNOUX T, LEAVER C, et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development[J]. Journal of Experimental Botany,1998,49(321):649-667.
[59]CHOUDHURY F K, DEVIREDDY A R, AZAD R K, et al. Rapid accumulation of glutathione during light stress in Arabidopsis[J]. Plant & Cell Physiology, 2018, 59(9): 1817-1826.
[60]BELA K, HORVTH E, GALL , et al. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses[J]. Journal of Plant Physiology, 2015, 176(1): 192-201.
[61]LABROU N E, PAPAGEORGIOU A C, PAVLI O, et al. Plant GSTome: structure and functional role in xenome network and plant stress response[J]. Current Opinion in Biotechnology, 2015, 32: 186-194.
[62]MILLA M, MAURER A, HUETE A R, et al. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways[J]. The Plant Journal, 2003, 36(5): 602-615.
[63]XU J, TIAN Y S, XING X J, et al. Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis[J]. Physiologia Plantarum, 2016, 156(2): 164-175.
[64]KANG S G, JEONG H K, SUH H S. Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa[J]. Molecules & Cells, 2004, 17(1): 23-28.
[65]GALL , CSISZR J, SECENJI M, et al. Glutathione transferase activity and expression patterns during grain filling in ag leaves of wheat genotypes differing in drought tolerance: response to water deficit[J]. Journal of Plant Physiology, 2009, 166(17): 1878-1891.
[66]CSISZR J, GALL A, HORVTH E, et al. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress[J]. Plant Physiology & Biochemistry, 2012, 52: 119-129.
[67]REZAEI M K, SHOBBAR Z S, SHAHBAZI M, et al. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern[J]. Journal of Plant Physiology, 2013, 170(14): 1277-1284.
[68]CHAN C, LAM H M. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress[J]. Plant and Cell Physiology, 2014, 55(3): 570-579.
[69]GAO F, CHEN J, MA T, et al. The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions[J]. International Journal of Molecular Sciences, 2014, 15(2): 3319-3335.
[70]LI L J, LU X C, MA H Y, et al. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata[J]. Journal of Plant Research, 2018, 131(5): 865-878.
[71]JIA T, WANG J, CHANG W, et al. Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(3): 788.
[72]CHEONG M, YUN D J. Salt-stress signaling[J]. Journal of Plant Biology, 2007, 50(2): 148-155.
[73]KHAN T A, YUSUF M, AHMAD A, et al. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress[J]. Food Chemistry, 2019, 289: 500-511.
[74]BANDURSKA H, NIEDZIELA J, PIETROWSKA-BOREK M, et al. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin[J]. Plant Physiology And Biochemistry, 2017, 118: 427-437.
[75]尹秀,王俊,张二豪,等. PEG-6000浸种处理对甘青青兰种子萌发及幼苗抗旱性的影响[J].江苏农业科学,2020,48(13):168-172.
[76]殷世航,周赛,黄霄宇,等. 中蔗系列新品种对干旱胁迫的响应及抗旱性评价[J].南方农业学报,2020,51(6):1339-1345.
[77]任保兰,耿建建,吕亚,等. 辣木幼苗对淹水胁迫的生理响应及耐涝性综合评价[J].南方农业学报,2021,52(3):789-796.
[78]PREZ-ARELLANO I, CARMONA-ALVAREZ F, MARTNEZ A I, et al. Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease[J]. Protein Science, 2010, 19(3): 372-382.
[79]SINGH P, TIWARI A, SINGH S P, et al. Proline biosynthesizing enzymes (glutamate 5-kinase and pyrroline-5-carboxylate reductase) from a model cyanobacterium for desiccation tolerance[J]. Physiology and Molecular Biology of Plants, 2013, 19(4): 521-528.
[80]DEUSCHLE K, FUNCK D, HELLMANN H, et al. A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity[J]. The Plant Journal, 2001, 27(4): 345-356.
[81]TIKHONOV A N. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts[J]. Photosynthesis Research, 2013, 116(2/3): 511-534.
[82]WANG L X, PAN D Z, LI J, et al. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance[J]. Plant Science, 2015, 231: 159-172.
[83]JI W, CONG R, LI S, et al. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress[J]. Frontiers in Plant Science, 2016, 7: 573.
[84]LIU Z, ZOU L, CHEN C, et al. iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae[J]. Scientific Reports, 2019,9(1): 9590.
相似文献/References:
[1]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(01):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
[2]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(01):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[3]刘金龙,辛寒晓,范学明,等.盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J].江苏农业学报,2017,(03):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
LIU Jin-long,XIN Han-xiao,FAN Xue-ming,et al.Effects of fish protein polypeptide on salt-stressed cherry tomato seed germination[J].,2017,(01):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
[4]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(01):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[5]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(01):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[6]王旭明,赵夏夏,陈景阳,等.盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J].江苏农业学报,2018,(03):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
WANG Xu-ming,ZHAO Xia-xia,CHEN Jing-yang,et al.The response and correlations between carbohydrate accumulation and activities of SPS, SS at booting stage of rice under salt stress[J].,2018,(01):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
[7]李敏,郭聪,李玉娟,等.旱柳转录组测序及生物学分析[J].江苏农业学报,2019,(02):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
LI Min,GUO Cong,LI Yu-juan,et al.Transcriptome sequencing and biological analysis of willow (Salix matsudana)[J].,2019,(01):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
[8]束晓春,李乃伟,汤兴利,等.NaCl处理对不同珊瑚菜种源光合生理和药用有效成分的影响[J].江苏农业学报,2019,(04):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]
SHU Xiao chun,LI Nai wei,TANG Xing li,et al.Effects of NaCl stress on photosynthetic physiology and active component of different Glehnia littoralis provenance[J].,2019,(01):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]
[9]王馨,闫永庆,殷媛,等.外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响[J].江苏农业学报,2019,(05):1032.[doi:doi:10.3969/j.issn.1000-4440.2019.05.005]
WANG Xin,YAN Yong-qing,YIN Yuan,et al.Effect of exogenous γ-aminobutyric acid(GABA) on photosynthetic characteristics of Nitraria sibirica pall under salt stress[J].,2019,(01):1032.[doi:doi:10.3969/j.issn.1000-4440.2019.05.005]
[10]石婧,刘东洋,张凤华.不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价[J].江苏农业学报,2020,(04):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]
SHI Jing,LIU Dong-yang,ZHANG Feng-hua.Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation[J].,2020,(01):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]