[1]蒋薇,靳容,刘明,等.甘薯IbHKT-like基因的克隆与表达分析[J].江苏农业学报,2021,(04):831-838.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]
 JIANG Wei,JIN Rong,LIU Ming,et al.Cloning and expression analysis of IbHKT-like gene in sweet potato[J].,2021,(04):831-838.[doi:doi:10.3969/j.issn.1000-4440.2021.04.003]
点击复制

甘薯IbHKT-like基因的克隆与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年04期
页码:
831-838
栏目:
遗传育种·生理生化
出版日期:
2021-08-28

文章信息/Info

Title:
Cloning and expression analysis of IbHKT-like gene in sweet potato
作者:
蒋薇1靳容1刘明1赵鹏1张爱君1王丹凤1李铁鑫2范文静2唐忠厚1
(1.江苏徐淮地区徐州农业科学研究所/中国农业科学院甘薯研究所,江苏徐州221131;2.安徽农业大学农学院,安徽合肥230036)
Author(s):
JIANG Wei1JIN Rong1LIU Ming1ZHAO Peng1ZHANG Ai-jun1WANG Dan-feng1LI Tie-xin2FAN Wen-jing2TANG Zhong-hou1
(1.Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province/Sweet Potato Research Institute,Chinese Academy of Agricultural Sciences,Xuzhou 221131,China;2.College of Agronomy,Anhui Agricultural University,Hefei 230036,China)
关键词:
甘薯IbHKT-like基因基因克隆表达分析亚细胞定位
Keywords:
sweet potatoIbHKT-like genegene cloningexpression analysissubcellular localization
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2021.04.003
文献标志码:
A
摘要:
植物高亲和钾转运体HKT基因具有Na+(或K+)单向运输或Na+-K+共转运作用。为了探究甘薯高亲和钾转运体HKT的离子转运情况及其对非生物胁迫的响应,本研究克隆得到1个甘薯钾离子转运体IbHKT-like 基因。生物信息学分析结果表明,IbHKT-like基因序列全长为1 647 bp,编码548个氨基酸。IbHKT-like蛋白有2个TrkH(细菌钾转运系统Trk亚基)保守结构域,10个跨膜片段。进化树分析结果表明,IbHKT-like蛋白与旋花科的矮牵牛InHKT6氨基酸序列十分相似,相似度为90.63%。亚细胞定位结果显示,IbHKT-like蛋白主要定位在细胞质膜,在叶绿体中存在少量分布。组织特异性分析结果表明,IbHKT-like基因在叶中表达量最高。实时荧光定量PCR结果显示,IbHKT-like基因的表达受到低温、干旱、高盐及过氧化氢胁迫的诱导,说明IbHKT-like基因可能在甘薯抵御非生物胁迫中发挥着重要的作用。
Abstract:
The plant high affinity potassium transporter HKT gene had Na+ (or K+) unidirectional transport effect or Na+-K+co-transport effect. To explore the ion transport of high affinity potassium transporter HKT in sweet potato and its response to abiotic stress, a potassium transporter IbHKT-like gene of sweet potato was cloned in this study. Results of bioinformatics analysis showed that, the full length of IbHKT-like gene sequence was 1 647 bp, encoding 548 amino acids. The IbHKT-like protein had two TrkH (Trk subunit of potassium transport system in bacteria) conservative domains and ten transmembrane fragments. Results of evolutionary tree analysis showed that, the amino acid sequence of IbHKT-like protein was very similar to that of InHKT6 in petunia of Convolvulaceae, with the similarity of 90.63%. Subcellular localization showed that, the IbHKT-like protein mainly located in the cytoplasmic membrane and rarely located in the chloroplast. Results of tissue-specific analysis showed that, the expression quantity of IbHKT-like gene was the highest in the leaves. The results of real-time fluorescent quantitative PCR showed that, the expression of IbHKT-like gene was induced by low temperature, drought, high salinity and hydrogen peroxide, indicating that IbHKT-like gene may play an important role in the resistance of sweet potato to abiotic stress.

参考文献/References:

[1]ROMHELD V,KIRKBY E A. Research on potassium in agriculture:needs and prospects[J]. Plant and Soil,2010,335(1/2):155-180.
[2]DURELL S R,GUY H R. Structural models of the KtrB,TrkH,and Trk1,2 symporters based on the structure of the KcsA K+ Channel[J]. Biophysical Journal,1999,77(2):789-807.
[3]WATERS S,GILLIHAM M,HRMOVA M. Plant high-affinity potassium(HKT) transporters involved in salinity tolerance:structural insights to probe differences in ion selectivity[J]. International Journal of Molecular Sciences,2013,14(4):7660-7680.
[4]BAXTER I,BRAZELTON J N,YU D,et al. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1[J]. PLoS Genetics,2010,6(11):e1001193.
[5]JANE D R,ALICIA M M,DEEPA J,et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis[J]. Plant,Cell & Environment,2007,30(4):497-507.
[6]COTSAFTIS O,PLETT D,SHIRLEY N,et al. A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing[J]. PLoS One,2017,7(7):e39865.
[7]REN Z H,GAO J P,LI L G,et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics,2005,37(10):1141-1146.
[8]MUNNS R,JAMES R A,XU B,et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology:The Science and Business of Biotechnology,2012,30(4):360-364.
[9]SIOBHAN B C,DAMIEN P J,WOLFGANG S,et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat,Nax2 and Kna1[J]. Plant Physiology,2007,143(4):1918-1928.
[10]李剑,张金林,王锁民,等. 小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析[J]. 草业学报,2013,22(2):140-149.
[11]李剑,张金林. 拒盐型牧草小花碱茅PutHKT2;1基因表达模式分析[J]. 草业科学,2012,29(9):1379-1383.
[12]胥猛,孙子谋,刘思安,等. 胡杨耐盐基因PeuHKT1的克隆与表达分析[J]. 分子植物育种,2016,14(9):2312-2318.
[13]SCHACHTMAN D P,SCHROEDER J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature,1994,370(6491):655-658.
[14]SU H,BALDERAS E,VERA-ESTRELLA R,et al. Expression of the cation transporter McHKT1 in a halophyte[J]. Plant Molecular Biology,2003,52(5):967-980.
[15]GARCIADEBLáS B,SENN M E,BAUELOS M A,et al. Sodium transport and HKT transporters:the rice model[J]. The Plant Journal,2003,34(6):788-801.
[16]RUBIO F,GASSMANN W,SCHROEDER J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270(5242):1660-1663.
[17]陆潭,陈华涛,沈振国,等. 植物钾通道与钾转运体研究进展[J]. 华北农学报,2019, 34(增刊1):372-379.
[18]李平,冯紫洲,陈永胜,等. 植物HKT转运蛋白基因的研究进展[J]. 北方园艺,2016(10):188-193.
[19]PARK S,YU Y,KOU M,et al. Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae[J]. Journal of Integrative Agriculture,2017,16(10):2168-2176.
[20]靳容,胡亚亚,张爱君,等. 甘薯钾离子转运蛋白HKT基因家族鉴定及其低钾胁迫下的表达模式分析[J]. 江苏师范大学学报(自然科学版),2020,38(1):31-36.
[21]SASSI A,MIEULET D,KHAN I,et al. The rice monovalent cation transporter OsHKT2;4:revisited ionic selectivity[J]. Plant Physiology,2012,160(1):498-510.
[22]VRY A A,MANUEL N C,DALY M,et al. Molecular biology of K + transport across the plant cell membrane:what do we learn from comparison between plant species? [J].Journal of Plant Physiology,2014,171(9):748-769.
[23]DURELL S R,HAO Y,NAKAMURA T,et al. Evolutionary relationship between K+ channels and symporters[J]. Biophysical Journal,1999,77(2):775-788.
[24]LI H Y, XU G Z, YANG C, et al. Genome-wide identification and expression analysis of HKT transcription factor under salt stress in nine plant species[J].Ecotoxicology and Environmental Safety,2019,171:435-442
[25]CAO Y,LIANG X,PAN Y,et al. A domestication-associated reduction in K+-preferring HKT transporter activity underlies maize shoot K+ accumulation and salt tolerance[J]. The New Phytologist,2019,222(1):301-317.
[26]BOHM J,SCHERZER S,SHABALA S,et al. Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability[J]. Molecular Plant,2016,9(3):428-436.
[27]陈华涛,陈新,顾和平,等. 大豆GmHKT6;2基因的克隆与表达特性分析[J]. 华北农学报,2012,27(3):1-5.
[28]LAURIE S,FEENEY K A,MAATHUIS F J M,et al. A role for HKT1 in sodium uptake by wheat roots[J]. The Plant Journal,2002,32(2):139-149.
[29]崔立新,和亚男,李亚萍,等. 水稻OsHKT基因表达模式分析[J]. 中国水稻科学,2017,31(6):559-567.
[30]徐海,宋波,顾宗福,等. 植物耐热机理研究进展[J].江苏农业学报,2020,36(1):243-250.
[31]王宏,马娜,蔺经,等. 4个早熟梨品种叶片对黑斑病的抗病性评价及与抗氧化物酶的关系[J]. 江苏农业科学,2019,47(2):80-82.
[32]AN D,CHEN J G,GAO Y Q,et al. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genetics,2017,13(10):e100706.
[33]BORJIGIN C,SCHILLING R K,BOSE J,et al. A single nucleotide substitution in TaHKT1;5-D controls shoot Na+ accumulation in bread wheat[J]. Plant,Cell & Environment,2020,43(9):2158-2171.
[34]SIOBHAN B C,BO X,MAHIMA K,et al. The Na+ transporter,TaHKT1;5-D,limits shoot Na+ accumulation in bread wheat[J]. The Plant Journal:for Cell and Molecular Biology,2014,80(3):516-526.
[35]ROSARIO H,BAUELOS M A,SENN M E,et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast[J]. Plant Physiology,2005,139(3):1495-1506.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(04):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(04):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(04):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(04):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(04):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(04):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(04):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(04):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
 LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(04):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]

备注/Memo

备注/Memo:
收稿日期:2020-12-06基金项目:国家重点研发计划项目(2018YFD1000704);国家自然科学基金项目(31771721);国家甘薯产业技术体系项目(CARS-11)作者简介:蒋薇(1996- ),女,江苏常州人,硕士研究生,主要从事甘薯栽培生理与生态研究。(E-mail)1298081288@qq.com通讯作者:唐忠厚,(E-mail)zhonghoutang@sina.com
更新日期/Last Update: 2021-09-06