[1]马仁罡,孙健英,李宗芸.基于生物信息学的甘薯基因组学等研究进展[J].江苏农业学报,2021,(02):531-538.[doi:doi:10.3969/j.issn.1000-4440.2021.02.032]
 MA Ren-gang,SUN Jian-ying,LI Zong-yun.Research progress of sweet potato genomics and other omics based on bioinformatics[J].,2021,(02):531-538.[doi:doi:10.3969/j.issn.1000-4440.2021.02.032]
点击复制

基于生物信息学的甘薯基因组学等研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
531-538
栏目:
综述
出版日期:
2021-04-30

文章信息/Info

Title:
Research progress of sweet potato genomics and other omics based on bioinformatics
作者:
马仁罡孙健英李宗芸
(江苏师范大学生命科学学院,江苏徐州221116)
Author(s):
MA Ren-gangSUN Jian-yingLI Zong-yun
(School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China)
关键词:
甘薯生物信息学基因组学转录组学蛋白质组学代谢组学
Keywords:
sweet potatobioinformaticsgen omicstranscriptomicsproteomicsmetabonomics
分类号:
Q78;S531
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.032
文献标志码:
A
摘要:
甘薯是重要的粮食、工业原料和新型能源作物,同时具有较高的营养价值。近年来,随着生物信息学分析手段、二代测序技术的发展,甘薯的基因组学、转录组学、蛋白质组学、代谢组学研究取得了较大进展。本文主要综述了近年来基于生物信息学技术,甘薯及其近缘野生种在基因组学、转录组学、蛋白质组学和代谢组学等方面研究中的进展,为甘薯品种改良提供参考和借鉴,并展望了甘薯未来的研究方向。
Abstract:
Sweet potato is an important food, industrial raw material and new energy crop with high nutritional value. In recent years, with the development of bioinformatics and the next generation sequencing technology, great progress had been got in the study of genomics, transcriptomics, proteomics and metabonomics of sweet potato. This paper mainly reviewed the research progress of genomics, transcriptomics, proteomics and metabonomics of sweet potato and its wild relatives based on bioinformatics in recent years. It can be used as a reference for the variety improvement of sweet potato. Finally, the future research direction of sweet potato is prospected.

参考文献/References:

[1]YANG J, MOEINZADEH M, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants,2017, 3(9): 696-703.
[2]李强,刘庆昌,马代夫,等. 甘薯遗传转化研究现状、问题及展望[J]. 分子植物育种, 2005(1): 99-106.
[3]薛方方,王义聪,杜美,等. 高通量全基因组测序应用于淋球菌耐药的研究进展[J]. 中国艾滋病性病, 2020, 26(6): 671-672.
[4]WANG D, LI F, CAO S, et al. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat[J]. Theor Appl Genet, 2020, 133(5): 1521-1539.
[5]TORRES-CORRAL Y, SANTOS Y. Comparative genomics of Streptococcus parauberis: new target for molecular identification of serotype III[J]. Applied Microbiology and Biotechnology, 2020, 104(14): 6211-6222.
[6]HIRAKAWA H, OKADA Y, TABUCHI H, et al. Survey of genome sequences in a wild sweet potato, Ipomoea trifida (H.B.K) G. Don[J]. DNA Research, 2015, 22(2): 171-179.
[7]WU S, LAU K H, CAO Q, et al. Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement[J]. Nature Communications, 2018, 9(1): 4512-4580.
[8]LI M, YANG S, XU W, et al. The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development[J]. BMC Plant Biology, 2019, 19(1): 119.
[9]HOSHINO A, JAYAKUMAR V, NITASAKA E, et al. Genome sequence and analysis of the Japanese morning glory Ipomoea nil[J]. Nature Communications, 2016, 7(1): 13295.
[10]霍恺森,赵冬兰,陈艳丽,等. 甘薯属耐盐植物马鞍藤基因组大小及特征分析[J]. 植物遗传资源学报, 2019, 20(3): 728-735.
[11]霍恺森,曹清河,王珧,等. 甘薯近缘野生种Ipomoea Littoralis全基因组Survey分析[J]. 热带作物学报, 2019, 40(10): 2001-2005.
[12]王珧,邓逸桐,戴习彬,等. 甘薯近缘种Ipomoea cordatotriloba基因组大小测定及高通量调查测序[J]. 热带作物学报, 2020,41(6):1154-1159.
[13]颜朗,李雪丹,吴燕,等. 甘薯基因组概览分析及重要功能基因挖掘[C].//中国遗传学会. 2015中国遗传学会大会论文摘要汇编: 北京:科学出版社, 2015: 42.
[14]SI Z, DU B, HUO J, et al. A genome-wide BAC-end sequence survey provides first insights into sweetpotato [Ipomoea batatas (L.) Lam.]genome composition[J]. BMC Genomics, 2016, 17(1): 945.
[15]ESERMAN L A, TILEY G P, JARRET R L, et al. Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences[J]. American Journal of Botany, 2014, 101(1): 92-103.
[16]YAN L, LAI X, LI X, et al. Analyses of the complete genome and gene expression of chloroplast of sweet potato (Ipomoea batata)[J]. PLoS One, 2015, 10(4): e124083.
[17]SUN J, DONG X, CAO Q, et al. A systematic comparison of eight new plastome sequences from Ipomoea L.[J]. Peer J, 2019, 7: e6563.
[18]PARK I, YANG S, KIM W J, et al. The complete chloroplast genomes of six Ipomoea species and indel marker development for the discrimination of authentic pharbitidis semen (Seeds of I. nil or I. purpurea)[J]. Frontiers in Plant Science, 2018, 9: 965.
[19]胡志程,周梦迪,吕建春,等. 甜瓜遗传图谱与基因定位研究进展[J]. 分子植物育种, 2020, 18(7): 2290-2295.
[20]李爱贤,刘庆昌,王庆美,等. 利用SRAP标记构建甘薯分子连锁图谱[J]. 作物学报, 2010, 36(8): 1286-1295.
[21]揭琴,李华,翟红,等. 甘薯抗茎线虫病基因AFLP标记的开发[J].农业生物技术学报, 2008,16(5): 837-841.
[22]KIM J, CHUNG I K, KIM K. Construction of a genetic map using EST-SSR markers and QTL analysis of major agronomic characters in hexaploid sweet potato [ Ipomoea batatas (L.) Lam][J]. PLoS One, 2017, 12(10): e185073.
[23]SHIRASAWA K, TANAKA M, TAKAHATA Y, et al. A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas)[J]. Scientific Reports, 2017, 7(1): 44207.
[24]SU W, WANG L, LEI J, et al. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing[J]. PLoS One, 2017, 12(2): e172066.
[25]李慧峰,黄咏梅,李彦青,等. 基于SLAF-seq技术的甘薯种质资源群体遗传进化分析[J]. 热带作物学报, 2019, 40(12): 2390-2396.
[26]MOLLINARI M, OLUKOLU B A, PEREIRA G D S, et al. Unraveling the hexaploid sweetpotato inheritance using ultra-dense multilocus mapping[J]. G3-Genes Genomes Genetics, 2020, 10(1): 281-292.
[27]SASAI R, TABUCHI H, SHIRASAWA K, et al. Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato[J]. DNA Research, 2019, 26(5): 399-409.
[28]崔凯,吴伟伟,刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7): 1-9.
[29]宋尚桥,马围围,张超龙,等. 基于转录组测序生物信息学分析的研究进展[J]. 中国畜牧兽医, 2020, 47(2): 392-398.
[30]DING N, CUI H, MIAO Y, et al. Single-molecule real-time sequencing identifies massive full-length cDNAs and alternative-splicing events that facilitate comparative and functional genomics study in the hexaploid crop sweet potato[J]. Peer J, 2019, 7: e7933.
[31]JO Y, KIM S, CHOI H, et al. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars[J]. Scientific Reports, 2020, 10(1): 2588.
[32]KUO Y, LIN Y, LI Y, et al. MicroR408 regulates defense response upon wounding in sweet potato[J]. Journal of Experimental Botany, 2019, 70(2): 469-483.
[33]YANG Z, ZHU P, KANG H, et al. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.)[J]. BMC Genomics, 2020, 21(1): 116-164.
[34]WENG S, KUO Y, KING Y, et al. Regulation of micoRNA2111 and its target IbFBK in sweet potato on wounding[J]. Plant Science, 2020, 292: 110391.
[35]JI C Y, BIAN X, LEE C, et al. De novo transcriptome sequencing and gene expression profiling of sweet potato leaves during low temperature stress and recovery[J]. Gene, 2019, 700: 23-30.
[36]JI C Y, HO S K, LEE C, et al. Comparative transcriptome profiling of tuberous roots of two sweetpotato lines with contrasting low temperature tolerance during storage[J]. Gene, 2020, 727:144244.
[37]LAU K H, ROSARIO HERRERA M, CRISOVAN E, et al. Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance[J]. Plant Direct, 2018, 2(10): e92.
[38]ARISHA M H, ABOELNASR H, AHMAD M Q, et al. Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress[J]. BMC Genomics, 2020, 21(1): 118-197.
[39]吴燕,颜朗,李雪丹,等. 甘薯耐旱和耐盐基因的挖掘和表达分析[J]. 四川大学学报, 2016, 53(5): 1147-1154.
[40]SUNG Y W, LEE I H, SHIM D, et al. Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita[J]. Molecular Biology Reports, 2019, 46(4): 4555-4564.
[41]DONG T, ZHU M, YU J, et al. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.)[J]. BMC Plant Biology, 2019, 19(1): 136.
[42]LI C, YAO W, WANG J, et al. A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam.)[J]. Plant Physiology and Biochemistry, 2019, 144: 395-403.
[43]HE L, TANG R, SHI X, et al. Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweetpotato[J]. BMC Plant Biology, 2019, 19(1): 232.
[44]PONNIAH S K, THIMMAPURAM J, BHIDE K, et al. Comparative analysis of the root transcriptomes of cultivated sweetpotato [Ipomoea batatas (L. ) Lam] and its wild ancestor [Ipomoea trifida(Kunth)G. Don ][J]. BMC Plant Biology, 2017, 17(1): 9.
[45]TAO X, GU Y H, JIANG Y Z, et al. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato[J]. Bioscience, Biotechnology, and Biochemistry,2013, 77(11): 2169-2174.
[46]WEI C, LI M, QIN J, et al. Transcriptome analysis reveals the effects of grafting on sweetpotato scions during the full blooming stages[J]. Genes & Genomics, 2019, 41(8): 895-907.
[47]ALMOHANNA T, AHSAN N, BOKROS N T, et al. Proteomics and proteogenomics analysis of sweetpotato (Ipomoea batatas) leaf and root[J]. Journal of Proteome Research, 2019, 18(7): 2719-2734.
[48]杨倩春,李思宁,陈硕,等. 代谢组学的运用及其研究进展[J]. 临床合理用药杂志, 2020, 13(2): 176-178.
[49]王佳钰. 重金属胁迫下植物代谢组学研究进展[J]. 绿色科技, 2020(1): 33-34.
[50]LEE W, YEO Y, OH S, et al. Compositional analyses of diverse phytochemicals and polar metabolites from different-colored potato (Solanum tubersum L.) tubers[J]. Food Science and Biotechnology, 2017, 26(5): 1379-1389.
[51]杨慧菊,兰玉倩,王石华. 植物响应低温胁迫组学研究进展[J]. 山东农业科学, 2020, 52(5): 142-148.
[52]DONADO-PESTANA C M, SALGADO J M, DE OLIVEIRA RIOS A, et al. Stability of carotenoids, total phenolics and in vitro antioxidant capacity in the thermal processing of orange-fleshed sweet potato (Ipomoea batatas Lam.) cultivars grown in Brazil[J]. Plant Foods for Human Nutrition, 2012, 67(3): 262-270.
[53]RAUTENBACH F, FABER M, LAURIE S, et al. Antioxidant capacity and antioxidant content in roots of 4 sweetpotato varieties[J]. Journal of Food Science, 2010, 75(5): C400-C405.
[54]KIM M Y, LEE B W, LEE H U, et al. Phenolic compounds and antioxidant activity in sweet potato after heat treatment[J]. Journal of the Science of Food and Agriculture, 2019, 99(15): 6833-6840.
[55]TEOW C C, TRUONG V, MCFEETERS R F, et al. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours[J]. Food Chemistry, 2006, 103:829-838.
[56]ROSE I M, VASANTHAKAALAM H. Comparison of the Nutrient composition of four sweet potato varieties cultivated in Rwanda[J]. American Journal of Food and Nutrition, 2011, 1(1): 34-38.
[57]PARK S, LEE S Y, YANG J W, et al. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers[J]. Food Science and Biotechnology, 2016, 25(1): 283-291.
[58]SU X, GRIFFIN J, XU J, et al. Identification and quantification of anthocyanins in purple-fleshed sweet potato leaves[J]. Heliyon, 2019, 5(6): e1964.
[59]WANG A, LI R, REN L, et al. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors [Ipomoea batatas (L.) Lam ][J]. Food Chemistry, 2018, 260: 124-134.
[60]OKI T, MASUDA M, FURUTA S, et al. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars[J]. Journal of Food Science, 2002, 67(5): 1752-1756.
[61]杨妍梅,李玉,覃圣,等. 静宁鸡PPARα基因克隆与生物信息学分析[J].江苏农业学报,2019,35(2):370-377.
[62]庞宁宁,樊怀福,王哲,等. 黄瓜PP2-A1蛋白的生物信息学分析[J]. 江苏农业科学,2019,47(2):46-49.
[63]祖盘玉,李维,林家栋,等. 赤水乌骨鸡TYR基因多态性及生物信息学分析[J].南方农业学报,2019,50(12):2806-2811.
[64]冯磊,石元豹,汪贵斌,等. 银杏bHLH家族转录因子生物信息学及表达分析[J].江苏农业学报,2019,35(2):400-411.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]田晓涵,刘玉玲,李永梅,等.两种不同生境植物棉花与雪莲CDPK1基因的克隆及生物信息学分析[J].江苏农业学报,2016,(05):1005.[doi:10.3969/j.issn.1000-4440.2016.05.008]
 TIAN Xiao-han,LIU Yu-ling,LI Yong-mei,et al.Cloning and bioinformatics analysis of CDPK1 gene in Gossypium hirsutum and Sasussured involucrata from two different habitats[J].,2016,(02):1005.[doi:10.3969/j.issn.1000-4440.2016.05.008]
[4]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(02):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[5]郝爱平.高粱查尔酮合成酶的生物信息学分析[J].江苏农业学报,2016,(06):1232.[doi:doi:10.3969/j.issn.1000-4440.2016.06.006]
 HAO Ai-ping.Bioinformatics analysis of chalcone synthase in Sorghum bicolor[J].,2016,(02):1232.[doi:doi:10.3969/j.issn.1000-4440.2016.06.006]
[6]夏雯雯,李锦,祝建波.天山雪莲水孔蛋白基因(AQP)家族鉴定与生物信息学分析[J].江苏农业学报,2016,(06):1244.[doi:doi:10.3969/j.issn.1000-4440.2016.06.008]
 XIA Wen-wen,LI Jin,ZHU Jian-bo.Identification and bioinformatics analysis of aquaporin gene (AQP) family in Saussurea involucrate Kar.[J].,2016,(02):1244.[doi:doi:10.3969/j.issn.1000-4440.2016.06.008]
[7]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(02):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[8]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[9]王红红,熊意,马亚茹,等.羊种布鲁氏菌043新疆流行株WbdA基因和WbkE基因的原核表达及生物信息学分析[J].江苏农业学报,2017,(02):367.[doi:doi:10.3969/j.issn.1000-4440.2017.02.020]
 WANG Hong-hong,XIONG Yi,MA Ya-ru,et al.Prokaryotic expression and bioinformatics analysis of WbdA gene and WbkE gene of 043 Xinjiang strains of Brucella melitensis[J].,2017,(02):367.[doi:doi:10.3969/j.issn.1000-4440.2017.02.020]
[10]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(02):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]

备注/Memo

备注/Memo:
收稿日期:2020-07-27基金项目:国家自然科学基金项目(31771367);江苏高校优势学科建设工程项目(PAPD);现代农业产业技术体系建设专项(CARS-10-B3);江苏师范大学研究生科研与实践创新计划项目(2020XKT480)作者简介:马仁罡(1995-),男,江苏徐州人,硕士研究生,从事物种进化方向的研究。(E-mail)13101956091@163.com通讯作者:李宗芸,(Tel)0516-83500083;(E-mail)zongyunli@xznu.edu.cn。孙健英,(E-mail)jianyingsun@jsnu.edu.cn
更新日期/Last Update: 2021-05-10