[1]赵宁博,杨佳佳,赵英俊,等.航空高光谱支持下黑土地理化性质反演对地形因子的响应[J].江苏农业学报,2020,(06):1444-1451.[doi:doi:10.3969/j.issn.1000-4440.2020.06.013]
 ZHAO Ning-bo,YANG Jia-jia,ZHAO Ying-jun,et al.Response of physical and chemical properties inversion of black soil to terrain factors supported by airborne hyperspectral data[J].,2020,(06):1444-1451.[doi:doi:10.3969/j.issn.1000-4440.2020.06.013]
点击复制

航空高光谱支持下黑土地理化性质反演对地形因子的响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1444-1451
栏目:
耕作栽培·资源环境
出版日期:
2020-12-31

文章信息/Info

Title:
Response of physical and chemical properties inversion of black soil to terrain factors supported by airborne hyperspectral data
作者:
赵宁博1杨佳佳2赵英俊1秦凯1杨越超1崔鑫1
(1.核工业北京地质研究院,遥感信息与图像分析技术国家级重点实验室,北京100029;2.中国地质调查局沈阳地质调查中心,辽宁沈阳110000)
Author(s):
ZHAO Ning-bo1YANG Jia-jia2ZHAO Ying-jun1QIN Kai1YANG Yue-chao1CUI Xin1
(1.National Key Lab of Remote Sensing Information and Image Analysis Technology, Beijing Research Institute of Uranium Geology, Beijing 100029, China;2.Shenyang Center of Geological Survey, CGS, Shenyang 110000, China)
关键词:
黑土地理化性质航空高光谱数据地形因子反演
Keywords:
black soilphysical and chemical propertiesairborne hyperspectral dataterrain factorsinversion
分类号:
TP79
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.013
文献标志码:
A
摘要:
为了探讨地形因子对黑土地理化性质航空高光谱反演的影响,本研究以黑龙江省海伦市典型黑土地为例,开展12种地形因子与土壤有机质含量、全氮含量、全磷含量、全钾含量、pH值、阳离子交换量、全盐量的相关性研究,并对比不同建模方法在加入地形因子前后的预测精度。航空高光谱反演结果表明,海拔、坡度、山谷指数、地形粗糙指数、起伏度与多种土壤理化指标显著相关,在加入地形因子后,支持向量机法和随机森林法的模型预测精度稳定提升,而偏最小二乘法的模型预测精度却大幅下降。随机森林法的模型预测效果整体最好,与纯光谱反射率的反演模型相比,加入地形因子后全氮含量模型预测R2的提升幅度最大(提升了0.062),7种理化指标预测模型R2的平均提升幅度为0.036。总之,地形因子对提升黑土地理化性质的航空高光谱反演精度有积极作用,且适合用于机器学习方法进行反演。
Abstract:
In order to explore the effects of terrain factors on the airborne hyperspectral inversion of physical and chemical properties of black soil, the typical black soil area of Hailun in Heilongjiang province was selected as the research area. The correlation research of 12 terrain factors with soil organic matter content, total nitrogen content, total phosphorus content, total potassium content, pH, cation exchange capacity and total salt content was carried out, and the prediction accuracy of different modeling methods before and after adding terrain factors was compared. The results showed that there was a significant correlation between various physical and chemical properties and the terrain factors such as altitude, slope, valley index, terrain roughness index, fluctuation degree. After adding terrain factors, the model prediction accuracy of support vector machine method and the random forest method was improved steadily, but the prediction accuracy of partial least squares method was greatly decreased. In this study, the modeling effect of random forest method was the best. Compared with the pure spectral inversion model, the model prediction R2 of seven indices was generally improved after adding terrain factors, with an average increase of 0.036, while the increase of total nitrogen content model was the largest (0.062). On the whole, the terrain factor plays an active role in improving the accuracy of airborne hyperspectral inversion of the physical and chemical properties of black soil, and it is suitable to use machine learning method for inversion.

参考文献/References:

[1]魏孝荣,邵明安. 黄土高原沟壑区小流域不同地形下土壤性质分布特征[J]. 自然资源学报, 2007, 22(6):946-953.
[2]魏孝荣,邵明安. 黄土沟壑区小流域不同地形下土壤微量元素分布特征[J]. 环境科学, 2009, 30(9):2741-2746.
[3]孙文义,郭胜利. 黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素[J]. 生态学报, 2010, 31(6):1604-1616.
[4]赵明月,赵文武,钟莉娜. 土地利用和环境因子对表层土壤有机碳影响的尺度效应——以陕北黄土丘陵沟壑区为例[J]. 生态学报, 2014, 34(5):1105-1113.
[5]薛志婧,侯晓瑞,程曼,等. 黄土丘陵区小流域尺度上土壤有机碳空间异质性[J]. 水土保持学报, 2011,25(3):160-163.
[6]赵越,罗志军,赵杰,等. 峡江县土壤养分空间特征及与地形因子的相关性[J]. 水土保持研究, 2018, 25(5):128-133.
[7]陈桂香,高灯州,曾从盛,等.福州市农田土壤养分空间变异特征[J].地球信息科学学报,2017,19(2):216-224.
[8]邓欧平,周稀,黄萍萍,等.川中紫色丘区土壤养分空间分异与地形因子相关性研究[J].资源科学,2013,35(12):2434-2443.
[9]王淑英,路苹,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征——以北京市平谷区为例[J].生态学报,2008,28(10):4957-4964.
[10]贾振宇,张俊华,丁圣彦,等.基于 GIS和地统计学的黄泛区土壤磷空间变异——以周口为例[J].应用生态学报,2016, 27(4):1211-1220.
[11]赵明松,张甘霖,李德成,等.苏中平原南部土壤有机质空间变异特征研究[J].地理科学,2013,33(1):83-89.
[12]宋轩,李立东,寇长林,等. 黄水河小流域土壤养分分布及其与地形的关系[J]. 应用生态学报, 2011, 22(12):3163-3168.
[13]徐莉,闫俊杰,陈晨,等. 新疆察布查尔县农耕层土壤养分空间特征及其与地形因子的关系[J]. 水土保持通报, 2018, 38(4):44-51.
[14]王雪梅,柴仲平,武红旗.典型干旱荒莫绿洲区耕层土壤养分空间变异[J].水土保持通报,2016,36(1):51-56.
[15]唐梦迎,丁建丽,夏楠,等. 干旱区典型绿洲土壤有机质含量分布特征及其影响因素[J]. 土壤学报, 2017, 54(3): 759-766.
[16]高凤杰,鞠铁男,吴啸,等. 黑土耕作层土壤pH空间变异及自相关分析[J]. 土壤, 2018,50(3):566-573.
[17]杜可,王乐,张淑香,等. 黑土区县域土壤养分空间分布特征及其影响因子[J]. 植物营养与肥料学报, 2018, 24(6):1465-1474.
[18]高凤杰,马泉来,韩文文,等. 黑土丘陵区小流域土壤有机质空间变异及分布格局[J]. 环境科学, 2016, 37(5):325-332.
[19]张孝存,郑粉莉,安娟,等. 典型黑土区坡耕地土壤侵蚀对土壤有机质和氮的影响[J]. 干旱地区农业研究, 2013, 31(4): 182-186.
[20]邢东兴,王明军,陈玲侠,等. 桃树遥感辨识的最佳时相与方法[J].江苏农业学报,2019,35(4):919-926.
[21]王利军,郭燕,王来刚,等. 农情遥感信息服务与野外监测云平台构建[J].南方农业学报,2018,49(6):1242-1248.
[22]张自超,韩宇,陈建,等. 基于无人机遥感数据的生态渠系信息提取[J]. 排灌机械工程学报,2018,36(10):1006-1011.
[23]王术波,韩宇,陈建,等.基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报,2018,36(11):1137-1141.
[24]单捷,孙玲,王志明,等. GF-1影像遥感监测指标与冬小麦长势参数的关系[J].江苏农业学报,2019,35(6):1323-1333.
[25]张素梅,王宗明,张柏,等. 利用地形和遥感数据预测土壤养分空间分布[J]. 农业工程学报, 2010, 26(5):188-194.
[26]刘焕军,谢雅慧,潘越,等. 黑土区田块土壤有机质空间分异及分布研究[J]. 土壤通报, 2018, 49(6): 1445-1451.
[27]秦承志,卢岩君,包黎莉,等. 简化数字地形分析软件(SimDTA)及其应用——以嫩江流域鹤山农场的坡位模糊分类应用为例[J]. 地球信息科学学报, 2009, 11(6): 737-743.
[28]沈从旺,徐丽华.土壤pH值和全钾含量高光谱反演方法比较[J]. 江苏农业学报, 2020, 36(1): 92-98.
[29]中华人民共和国自然资源部.土地质量地球化学评价规范:DZ/T 0295-2016 [S].北京:地质出版社,2016:42.
[30]吕贻忠,李保国. 土壤学实验[M]. 北京: 中国农业出版社, 2010.
[31]杨劲松,姚荣江. 黄河三角洲地区土壤水盐空间变异特征研究[J]. 地理科学, 2007, 27(3): 348-353.

相似文献/References:

[1]祝友朋,韩长志,熊智.核桃细菌性黑斑病菌分泌蛋白质的理化性质及特征分析[J].江苏农业学报,2019,(02):295.[doi:doi:10.3969/j.issn.1000-4440.2019.02.008]
 ZHU You-peng,HAN Chang-zhi,XIONG Zhi.Physicochemical properties and characteristic analysis of secretory proteins in walnut bacterial black spot pathogen[J].,2019,(06):295.[doi:doi:10.3969/j.issn.1000-4440.2019.02.008]
[2]祝友朋,韩长志.里氏木霉与黏绿木霉中非核糖体肽合成酶的生物信息学分析[J].江苏农业学报,2020,(05):1119.[doi:doi:10.3969/j.issn.1000-4440.2020.05.007]
 ZHU You-peng,HAN Chang-zhi.Bioinformatics analysis on non-ribosomal peptide synthetase in Trichoderma reesei and Trichoderma virens[J].,2020,(06):1119.[doi:doi:10.3969/j.issn.1000-4440.2020.05.007]
[3]张霞,潘孝青,李健,等.兔粪与中药渣低碳氮比堆肥理化性质变化特征[J].江苏农业学报,2020,(06):1459.[doi:doi:10.3969/j.issn.1000-4440.2020.06.015]
 ZHANG Xia,PAN Xiao-qing,LI Jian,et al.Variation characteristics of physical and chemical properties of compost during composting process of rabbit manure and traditional Chinese medicine residue at low carbon/nitrogen ratios[J].,2020,(06):1459.[doi:doi:10.3969/j.issn.1000-4440.2020.06.015]
[4]李晓燕,李成双,金业程,等.茎瘤芥BjuGAPC基因序列特征及其参与茎发育的糖酸含量调控[J].江苏农业学报,2022,38(06):1474.[doi:doi:10.3969/j.issn.1000-4440.2022.06.004]
 LI Xiao-yan,LI Cheng-shuang,JIN Ye-cheng,et al.Characteristics of BjuGAPC gene sequence in Brassica juncea var. tumida and its regulation of sugar and acid content in stem development[J].,2022,38(06):1474.[doi:doi:10.3969/j.issn.1000-4440.2022.06.004]
[5]李晓龙,马军,褚燕南,等.宁夏引黄灌区果园生草处理对土壤理化性质的影响[J].江苏农业学报,2024,(07):1227.[doi:doi:10.3969/j.issn.1000-4440.2024.07.009]
 LI Xiaolong,MA Jun,CHU Yannan,et al.Effects of orchard grass cultivation treatment on physicochemical properties of soils in the Yellow River irrigation zone of Ningxia[J].,2024,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2024.07.009]
[6]陈巍,吴娥娇,韦小猜,等.不同配比基质对草莓扦插苗生长的影响[J].江苏农业学报,2024,(07):1305.[doi:doi:10.3969/j.issn.1000-4440.2024.07.017]
 CHEN Wei,WU Ejiao,WEI Xiaocai,et al.Effects of substrates with different ratios on the growth of strawberry cuttage seedlings[J].,2024,(06):1305.[doi:doi:10.3969/j.issn.1000-4440.2024.07.017]

备注/Memo

备注/Memo:
收稿日期:2020-05-09基金项目:中国地质调查局东北黑土地1∶250 000土地质量地球化学调查项目(DD20160316);中国地质调查局兴凯湖平原及松辽平原西部土地质量地球化学调查项目(DD20190520)作者简介:赵宁博(1985-),男,河南郑州人,硕士,高级工程师,主要从事遥感与地球化学综合研究。(E-mail)zhaoningbo1985@126.com
更新日期/Last Update: 2021-01-15