参考文献/References:
[1]卢宗志,李艳君,李海春,等. 玉米灰斑病对玉米产量及产量特性的影响研究[J]. 玉米科学, 2008, 16(6): 126-129.
[2]赵立萍,王晓鸣,段灿星,等. 中国玉米灰斑病发生现状与未来扩散趋势分析[J]. 中国农业科学, 2015, 48(18): 3612-3626.
[3]HILTY J W, HADDEN C H, GARDEN F T. Response of maize hybrids and inbred lines to gray leaf spot disease and the effects on yield in Tennessee[J]. Plant Disease Reporter, 1979, 63(6): 515-518.
[4]KINYUA Z M, SMITH J J, KIBATA G N, et al. Status of grey leaf spot disease in Kenyan maize production ecosystems[J]. African Crop Science Journal, 2010, 18(4): 183-194.
[5]李晓,张小飞,崔丽娜,等. 警惕四川玉米灰斑病的发生危害[J]. 四川农业科技, 2011(12): 37.
[6]周惠萍,吴景芝,李月秋,等. 云南省玉米灰斑病发生规律研究[J]. 西南农业学报, 2011, 24(6): 2207-2212.
[7]张益先,吕国忠,梁景颐,等. 玉米灰斑病菌生物学特性研究[J]. 植物病理学报, 2003, 33(4): 292-295.
[8]刘庆奎,秦子惠,张小利,等. 中国玉米灰斑病病原菌的鉴定及其基本特征研究[J]. 中国农业科学, 2013, 46(19): 4044-4057.
[9]LIU K J, XU X D. First report of gray leaf spot of maize caused by Cercospora zeina in China[J]. Plant Disease, 2013, 97(12): 1656.
[10]吴纪昌,马丽君,王作英. 玉米抗尾孢菌叶斑病鉴定与抗病材料利用[J]. 辽宁农业科学, 1997(5): 25-28.
[11]董怀玉,姜钰,王丽娟,等. 玉米种质资源抗灰斑病鉴定与评价[J]. 植物遗传资源学报, 2005, 6(4): 441-443.
[12]吕香玲,李新海,陈阳,等. 玉米种质抗灰斑病鉴定与评价[J]. 玉米科学, 2011, 19(6): 125-128.
[13]李世强,陈威,谭静,等. 玉米灰斑病的抗性机理研究进展[J]. 生物技术进展, 2011, 1(2): 112-115.
[14]ABEBE M, MARIA A. Genetic analysis of resistance to gray leaf spot of maize inbred lines[J]. Crop Science, 2005, 45(1): 163-170.
[15]BUBECK D M, GOODMAN M M, BEAVIS W D, et al. Quantitative trait loci controlling resistance to gray leaf spot in maize[J]. Crop Science, 1993, 33: 838-847.
[16]CLEMENTS M J, DUDLEY J W, WHITE D G. Quantitative trait loci associated with resistance to gray leaf spot of corn[J]. Phytopathology, 2000, 90(9):1018-1025.
[17]LEHMENSIEK A, ESTERHUIZEN A M, VAN-STADEN D, et al. Genetic mapping of gray leaf spot (GLS) resistance genes in maize [J]. Theoretical and Applied Genetics, 2001, 103: 797-803.
[18]BALINT-KURTI P J, WISSER R, ZWONITZER J C. Use of the IBM population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize[J]. Crop Science, 2008, 48(5): 1696-1704.
[19]POZAR G, BUTRUILLE D, SILVA H D, et al. Mapping and validation of quantitative trait loci for resistance to Cercospora zea-maydis infection in tropical maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2009, 118(3): 533-564.
[20]ZHANG Y, XU L, FAN X M, et al. QTL mapping of resistance to gray leaf spot in maize[J]. Theoretical and Applied Genetics, 2012, 125(8): 1797-1808.
[21]XU L, ZHANG Y, SHAO S Q, et al. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot[J]. BMC Plant Biology, 2014, 14: 230-240.
[22]BERGER D K, CARSTENS M, KORSMAN J N, et al. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina[J]. BMC Genetics, 2014, 15: 60.
[23]LIU L, TAN J, ZHANG Y D, et al. QTL mapping for gray leaf spot resistance in a tropical maize population[J]. Plant Disease, 2016, 100(2): 304-312.
[24]HE W Z, YANG L, LENG Y F, et al. QTL mapping for resistance of maize to grey leaf spot[J]. Journal of Phytopathology, 2018, 166(3): 167-176.
[25]WANG W Y, BARRATT B J, CLAYTON D G, et al. Genome-wide association studies: theoretical and practical concerns[J]. Nature Review Genetics, 2005, 6: 109-118.
[26]WITTE J S. Genome-wide association studies and beyond[J]. Annual Review of Public Health, 2010, 31(1): 9-20.
[27]ZHU C S, GORE M, BUCKLER E S, et al. Status and prospects of association mapping in plants[J]. The Plant Genome, 2008, 1(1): 5-20.
[28]MAMMADOV J A, SUN X C, GAO Y X, et al. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.)[J]. BMC Genomics, 2015, 16(1): 916-931.
[29]KUKI M C, SCAPIM C A, ROSSI E S, et al. Genome wide association study for gray leaf spot resistance in tropical maize core[J]. PLoS One, 2018, 13(6): e0199539.
[30]王晓鸣,石洁,晋齐鸣,等. 玉米病虫害田间手册——病虫害鉴别与抗性鉴定[M]. 北京: 中国农业科学技术出版社, 2010: 8.
[31]闫伟,李元,宋茂兴,等. 玉米抗灰斑病QTL元分析及其验证[J]. 作物学报, 2016, 42(5): 758-767.
[32]BENSON J M, POLAND J A, BENSON B M, et al. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis[J]. PLoS Genetics, 2015, 11(3): e1005045.
[33]ZWONITZER J C, COLES N D, KRAKOWSKY M D, et al. Mapping resistance quantitative trait loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance?[J]. Phytopathology, 2010, 100(1): 72-79.
[34]JINES M P. Identification of quantitative trait loci (QTL) for gray leaf spot resistance, maturity, and grain yield in a semi-tropical recombinant inbred population of maize[D]. North Carolina, USA: North Carolina State University, 2004:55-69.
[35]谭静,罗吉,孙彩梅,等. 玉米灰斑病抗性种质与基因位点的研究进展[J]. 种子, 2019, 38(8): 57-60,64.
[36]SHI L Y, LV X L, WENG J F, et al. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.)[J].The Crop Journal, 2014(Z1): 132-143.
[37]刘可杰,董怀玉,姜钰,等. 300份玉米种质对两种灰斑病菌的抗性评价[J]. 玉米科学, 2018, 26(4): 162-165.
[38]TAKAHASHI Y, BERBERICH T, KANZAKI H, et al. Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in non-host resistance[J]. Molecular Plant-Microbe Interactions, 2009, 22(1): 31-38.
[39]XU G Y, LI S Z, XIE K, et al. Plant ERD2‐like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity[J]. The Plant Journal, 2012, 72(1): 57-69.
[40]PEI D, ZHANG W, SUN H, et al. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses[J]. Plant Cell Reports, 2014, 33(10): 1697-1710.
[41]AFZAL A J, WOOD A J, LIGHTFOOT D A. Plant receptor-like serine threonine kinases: roles in signaling and plant defense[J]. Molecular Plant-Microbe Interactions, 2008, 21(5): 507-517.
[42]SEKHWAL M K, LI P C, LAM I, et al. Disease resistance gene analogs (RGAs) in plants[J]. International Journal of Molecular Sciences, 2015, 16(8): 19248-19290.
[43]ZHOU T, FAN M X, IRFAN M, et al. Phylogenetic analysis of STK gene family and Usp domain in maize[J]. Molecular Biology Reports, 2014, 41(12): 8273-8284.
[44]KRISHNAN A, MAHADEVAN C, MANI T, et al. Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant Piper colubrinum Link.[J]. Plant Cell, Tissue and Organ Culture, 2015, 122(2): 269-283.
[45]宋军锋,陈华,田志强,等. 玉米灰斑病抗病QTL鉴定和效应分析[J]. 河南农业大学学报, 2019, 53(5): 677-682.
[46]YU Y, SHI J Y, LI X Y, et al. Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize[J]. BMC Genomics, 2018, 19(1): 742-758.
[47]SZABADOS L, SAVOUR A. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97.
[48]VERSLUES P E, SHARMA S. Proline metabolism and its implications for plant-environment interaction[J]. The Arabidopsis Book, 2010, 2010(8): e0140.
[49]郭红莲,陈捷,高增贵. 游离脯氨酸在玉米灰斑病抗性机制中作用的研究[J]. 玉米科学, 2003, 11(1): 83-85.
[50]CHEN Z J, TIAN L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy[J]. Biochim Biophys Acta, 2007, 1769(5/6): 295-307.
[51]SEKHWAL M K, LI P, LAM I, et al. Disease resistance gene analogs (RGAs) in plants[J]. International Journal of Molecular Sciences, 2015, 16(8): 19248-19290.
[52]SONG D H, LI G J, SONG F M, et al. Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice[J]. Molecular Biology Reports, 2008, 35(2): 275-283.
[53]PARK Y J, LEE H J, KWAK K J, et al. MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi[J]. Plant and Cell Physiology, 2014, 55(9): 1660-1668.
相似文献/References:
[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(06):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(06):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(06):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(06):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(06):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(06):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(06):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]