[1]谭静,罗吉,王文瑞,等.玉米尾孢菌灰斑病抗性种质鉴定及其抗性基因分析[J].江苏农业学报,2020,(06):1373-1381.[doi:doi:10.3969/j.issn.1000-4440.2020.06.004]
 TAN Jing,LUO Ji,WANG Wen-rui,et al.Identification of resistant germplasm and analysis on resistant genes of gray leaf spot caused by Cercospora zeina in maize[J].,2020,(06):1373-1381.[doi:doi:10.3969/j.issn.1000-4440.2020.06.004]
点击复制

玉米尾孢菌灰斑病抗性种质鉴定及其抗性基因分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1373-1381
栏目:
遗传育种·生理生化
出版日期:
2020-12-31

文章信息/Info

Title:
Identification of resistant germplasm and analysis on resistant genes of gray leaf spot caused by Cercospora zeina in maize
作者:
谭静罗吉王文瑞王琨高佳琪
(云南大学农学院,云南昆明650500)
Author(s):
TAN JingLUO JiWANG Wen-ruiWANG KunGAO Jia-qi
(School of Agriculture, Yunnan University, Kunming 650500, China)
关键词:
玉米玉米尾孢菌灰斑病抗性种质抗病基因关联分析
Keywords:
maizeCercospora zeinagray leaf spotresistant germplasmresistant genecorrelation analysis
分类号:
S435.131.4+9
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.004
文献标志码:
A
摘要:
灰斑病是全球玉米的重要病害,特别对中国西南地区玉米的生产造成了严重影响,玉米尾孢菌是中国西南地区玉米灰斑病的主要致病菌种。本研究采用来源广泛的241份玉米自交系构建关联群体,在云南玉米灰斑病重病区进行灰斑病的田间自然发病抗性鉴定;利用覆盖玉米全基因组的单核苷酸多态性(SNP)标记对由241份玉米自交系构建的关联群体进行基因型分析,在此基础上通过全基因组关联分析进行玉米灰斑病抗性基因的定位及其候选基因的预测,为玉米灰斑病抗性育种提供技术支撑。2017-2018年的玉米灰斑病抗性鉴定结果显示,2年共有109份热带/亚热带玉米自交系之间和109份温带玉米自交系材料之间以及材料与年份互作间的差异均达极显著水平;在2017-2018年的抗性鉴定结果中均表现为抗病的材料有44份,均表现为高抗的材料仅有5份。用20 586个高质量SNP标记、2年玉米灰斑病表型数据进行全基因组关联分析,结果显示,在P≤0.001(-lgP≥3)条件下,共检测到44个与玉米灰斑病抗性显著关联的SNP位点,其中34个SNP位点对应31个基因,分布在除10号染色体外的其他染色体上。结合已有的连锁定位研究结果可知,在以上31个基因中,除了4个基因外,其余27个基因均分布在已知数量性状座位(QTL)区间内,将这27个基因在生物信息数据库中与已有信息进行比对,共获得8个与抗病相关的候选基因。研究结果可为由玉米尾孢菌引起的玉米灰斑病的抗性育种及其抗性基因的克隆、抗病机制的研究奠定基础。
Abstract:
Gray leaf spot (GLS) is an important disease of maize in the globe, which brings about severe impact on maize production especially in Southwestern China. Cercospora zeina is the main pathogen of GLS in Southwestern China. In this study, 241 maize inbred lines with wide sources were used to construct association population, and the resistance phenotype to GLS under natural condition in the severe disease area of Yunnan was evaluated. Genotypes of the association population constructed by 241 maize inbred lines were analyzed by single nucleotide polymorphism (SNP) markers covering the whole genome. Then the loci of GLS-resistant genes and the candidate genes were predicted to provide technical support for the GLS-resistant breeding of maize by genome-wide association analysis. The two-year (2017 to 2018) identification results of GLS-resistance indicated that there were significant differences among 109 tropical/subtropical maize inbred lines, 109 temperate maize inbred lines and the interaction between materials and years. There were 44 inbred lines with disease resistance and five inbred lines with high resistance in two years of resistant evaluation. The results of genome-wide association analysis by using 20 586 high-quality SNP markers and two-year phenotypic data of GLS indicated that, under the condition of P≤0.001 (-lgP≥3), a total of 44 SNP loci significantly associated with GLS-resistance were detected, among which 34 SNP loci corresponding to 31 genes were distributed on chromosomes except for chromosome 10. Compared with existing research results on linkage location, it could be seen that except for four genes, the remaining 27 genes of the 31 genes were located in the quantitative trait locus (QTL). Eight candidate genes related to diseaseresistance were obtained by comparing the 27 genes in bioinformatics database. The results will lay a foundation for the resistance breeding, the cloning of resistant genes and the resistance mechanism research on maize GLS (Cercospora zeina).

参考文献/References:

[1]卢宗志,李艳君,李海春,等. 玉米灰斑病对玉米产量及产量特性的影响研究[J]. 玉米科学, 2008, 16(6): 126-129.
[2]赵立萍,王晓鸣,段灿星,等. 中国玉米灰斑病发生现状与未来扩散趋势分析[J]. 中国农业科学, 2015, 48(18): 3612-3626.
[3]HILTY J W, HADDEN C H, GARDEN F T. Response of maize hybrids and inbred lines to gray leaf spot disease and the effects on yield in Tennessee[J]. Plant Disease Reporter, 1979, 63(6): 515-518.
[4]KINYUA Z M, SMITH J J, KIBATA G N, et al. Status of grey leaf spot disease in Kenyan maize production ecosystems[J]. African Crop Science Journal, 2010, 18(4): 183-194.
[5]李晓,张小飞,崔丽娜,等. 警惕四川玉米灰斑病的发生危害[J]. 四川农业科技, 2011(12): 37.
[6]周惠萍,吴景芝,李月秋,等. 云南省玉米灰斑病发生规律研究[J]. 西南农业学报, 2011, 24(6): 2207-2212.
[7]张益先,吕国忠,梁景颐,等. 玉米灰斑病菌生物学特性研究[J]. 植物病理学报, 2003, 33(4): 292-295.
[8]刘庆奎,秦子惠,张小利,等. 中国玉米灰斑病病原菌的鉴定及其基本特征研究[J]. 中国农业科学, 2013, 46(19): 4044-4057.
[9]LIU K J, XU X D. First report of gray leaf spot of maize caused by Cercospora zeina in China[J]. Plant Disease, 2013, 97(12): 1656.
[10]吴纪昌,马丽君,王作英. 玉米抗尾孢菌叶斑病鉴定与抗病材料利用[J]. 辽宁农业科学, 1997(5): 25-28.
[11]董怀玉,姜钰,王丽娟,等. 玉米种质资源抗灰斑病鉴定与评价[J]. 植物遗传资源学报, 2005, 6(4): 441-443.
[12]吕香玲,李新海,陈阳,等. 玉米种质抗灰斑病鉴定与评价[J]. 玉米科学, 2011, 19(6): 125-128.
[13]李世强,陈威,谭静,等. 玉米灰斑病的抗性机理研究进展[J]. 生物技术进展, 2011, 1(2): 112-115.
[14]ABEBE M, MARIA A. Genetic analysis of resistance to gray leaf spot of maize inbred lines[J]. Crop Science, 2005, 45(1): 163-170.
[15]BUBECK D M, GOODMAN M M, BEAVIS W D, et al. Quantitative trait loci controlling resistance to gray leaf spot in maize[J]. Crop Science, 1993, 33: 838-847.
[16]CLEMENTS M J, DUDLEY J W, WHITE D G. Quantitative trait loci associated with resistance to gray leaf spot of corn[J]. Phytopathology, 2000, 90(9):1018-1025.
[17]LEHMENSIEK A, ESTERHUIZEN A M, VAN-STADEN D, et al. Genetic mapping of gray leaf spot (GLS) resistance genes in maize [J]. Theoretical and Applied Genetics, 2001, 103: 797-803.
[18]BALINT-KURTI P J, WISSER R, ZWONITZER J C. Use of the IBM population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize[J]. Crop Science, 2008, 48(5): 1696-1704.
[19]POZAR G, BUTRUILLE D, SILVA H D, et al. Mapping and validation of quantitative trait loci for resistance to Cercospora zea-maydis infection in tropical maize (Zea mays L.)[J]. Theoretical and Applied Genetics, 2009, 118(3): 533-564.
[20]ZHANG Y, XU L, FAN X M, et al. QTL mapping of resistance to gray leaf spot in maize[J]. Theoretical and Applied Genetics, 2012, 125(8): 1797-1808.
[21]XU L, ZHANG Y, SHAO S Q, et al. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot[J]. BMC Plant Biology, 2014, 14: 230-240.
[22]BERGER D K, CARSTENS M, KORSMAN J N, et al. Mapping QTL conferring resistance in maize to gray leaf spot disease caused by Cercospora zeina[J]. BMC Genetics, 2014, 15: 60.
[23]LIU L, TAN J, ZHANG Y D, et al. QTL mapping for gray leaf spot resistance in a tropical maize population[J]. Plant Disease, 2016, 100(2): 304-312.
[24]HE W Z, YANG L, LENG Y F, et al. QTL mapping for resistance of maize to grey leaf spot[J]. Journal of Phytopathology, 2018, 166(3): 167-176.
[25]WANG W Y, BARRATT B J, CLAYTON D G, et al. Genome-wide association studies: theoretical and practical concerns[J]. Nature Review Genetics, 2005, 6: 109-118.
[26]WITTE J S. Genome-wide association studies and beyond[J]. Annual Review of Public Health, 2010, 31(1): 9-20.
[27]ZHU C S, GORE M, BUCKLER E S, et al. Status and prospects of association mapping in plants[J]. The Plant Genome, 2008, 1(1): 5-20.
[28]MAMMADOV J A, SUN X C, GAO Y X, et al. Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.)[J]. BMC Genomics, 2015, 16(1): 916-931.
[29]KUKI M C, SCAPIM C A, ROSSI E S, et al. Genome wide association study for gray leaf spot resistance in tropical maize core[J]. PLoS One, 2018, 13(6): e0199539.
[30]王晓鸣,石洁,晋齐鸣,等. 玉米病虫害田间手册——病虫害鉴别与抗性鉴定[M]. 北京: 中国农业科学技术出版社, 2010: 8.
[31]闫伟,李元,宋茂兴,等. 玉米抗灰斑病QTL元分析及其验证[J]. 作物学报, 2016, 42(5): 758-767.
[32]BENSON J M, POLAND J A, BENSON B M, et al. Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis[J]. PLoS Genetics, 2015, 11(3): e1005045.
[33]ZWONITZER J C, COLES N D, KRAKOWSKY M D, et al. Mapping resistance quantitative trait loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance?[J]. Phytopathology, 2010, 100(1): 72-79.
[34]JINES M P. Identification of quantitative trait loci (QTL) for gray leaf spot resistance, maturity, and grain yield in a semi-tropical recombinant inbred population of maize[D]. North Carolina, USA: North Carolina State University, 2004:55-69.
[35]谭静,罗吉,孙彩梅,等. 玉米灰斑病抗性种质与基因位点的研究进展[J]. 种子, 2019, 38(8): 57-60,64.
[36]SHI L Y, LV X L, WENG J F, et al. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.)[J].The Crop Journal, 2014(Z1): 132-143.
[37]刘可杰,董怀玉,姜钰,等. 300份玉米种质对两种灰斑病菌的抗性评价[J]. 玉米科学, 2018, 26(4): 162-165.
[38]TAKAHASHI Y, BERBERICH T, KANZAKI H, et al. Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in non-host resistance[J]. Molecular Plant-Microbe Interactions, 2009, 22(1): 31-38.
[39]XU G Y, LI S Z, XIE K, et al. Plant ERD2‐like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity[J]. The Plant Journal, 2012, 72(1): 57-69.
[40]PEI D, ZHANG W, SUN H, et al. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses[J]. Plant Cell Reports, 2014, 33(10): 1697-1710.
[41]AFZAL A J, WOOD A J, LIGHTFOOT D A. Plant receptor-like serine threonine kinases: roles in signaling and plant defense[J]. Molecular Plant-Microbe Interactions, 2008, 21(5): 507-517.
[42]SEKHWAL M K, LI P C, LAM I, et al. Disease resistance gene analogs (RGAs) in plants[J]. International Journal of Molecular Sciences, 2015, 16(8): 19248-19290.
[43]ZHOU T, FAN M X, IRFAN M, et al. Phylogenetic analysis of STK gene family and Usp domain in maize[J]. Molecular Biology Reports, 2014, 41(12): 8273-8284.
[44]KRISHNAN A, MAHADEVAN C, MANI T, et al. Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant Piper colubrinum Link.[J]. Plant Cell, Tissue and Organ Culture, 2015, 122(2): 269-283.
[45]宋军锋,陈华,田志强,等. 玉米灰斑病抗病QTL鉴定和效应分析[J]. 河南农业大学学报, 2019, 53(5): 677-682.
[46]YU Y, SHI J Y, LI X Y, et al. Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize[J]. BMC Genomics, 2018, 19(1): 742-758.
[47]SZABADOS L, SAVOUR A. Proline: a multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97.
[48]VERSLUES P E, SHARMA S. Proline metabolism and its implications for plant-environment interaction[J]. The Arabidopsis Book, 2010, 2010(8): e0140.
[49]郭红莲,陈捷,高增贵. 游离脯氨酸在玉米灰斑病抗性机制中作用的研究[J]. 玉米科学, 2003, 11(1): 83-85.
[50]CHEN Z J, TIAN L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy[J]. Biochim Biophys Acta, 2007, 1769(5/6): 295-307.
[51]SEKHWAL M K, LI P, LAM I, et al. Disease resistance gene analogs (RGAs) in plants[J]. International Journal of Molecular Sciences, 2015, 16(8): 19248-19290.
[52]SONG D H, LI G J, SONG F M, et al. Molecular characterization and expression analysis of OsBISERK1, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice[J]. Molecular Biology Reports, 2008, 35(2): 275-283.
[53]PARK Y J, LEE H J, KWAK K J, et al. MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi[J]. Plant and Cell Physiology, 2014, 55(9): 1660-1668.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(06):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(06):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(06):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(06):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(06):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(06):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(06):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(06):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2020-05-16基金项目:国家自然科学基金项目(31560395)作者简介:谭静(1975-),女,山东乳山人,硕士,研究员,主要研究方向为玉米遗传改良。(Tel)0871-65031539;(E-mail)tanjingli@sina.com
更新日期/Last Update: 2021-01-15