[1]史建磊,熊自立,李涛,等.番茄组蛋白乙酰转移酶(HAT)的全基因组鉴定与分析[J].江苏农业学报,2020,(03):666-674.[doi:doi:10.3969/j.issn.1000-4440.2020.03.019]
 SHI Jian-lei,XIONG Zi-li,LI Tao,et al.Genome-wide identification and analysis of histone acetyltransferase (HAT) in tomato[J].,2020,(03):666-674.[doi:doi:10.3969/j.issn.1000-4440.2020.03.019]
点击复制

番茄组蛋白乙酰转移酶(HAT)的全基因组鉴定与分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
666-674
栏目:
园艺
出版日期:
2020-06-30

文章信息/Info

Title:
Genome-wide identification and analysis of histone acetyltransferase (HAT) in tomato
作者:
史建磊1熊自立1李涛2张海利1宰文珊1
(1.温州科技职业学院,浙江温州325006;2.广东省农业科学院蔬菜研究所,广东广州510640)
Author(s):
SHI Jian-lei1XIONG Zi-li1LI Tao2ZHANG Hai-li1ZAI Wen-shan1
(1.Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China;2.Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China)
关键词:
番茄组蛋白乙酰转移酶生物信息学
Keywords:
tomatohistone acetyltransferase (HAT)bioinformatics
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.019
文献标志码:
A
摘要:
组蛋白乙酰化修饰在基因表达调控方面扮演着重要角色。为深入挖掘番茄组蛋白乙酰转移酶(HAT)基因,本研究运用生物信息学方法,共鉴定出26个番茄HAT。聚类分析发现,这些HAT可以分为7组,分别为HAG、HAG1、HAG2、MCC1、HAM、HAF和HAC。其中,GNAT家族(GCN5、HAT1、MCC1) 18个、p300/CBP家族4个、MYST和TAFII250家族各1个。6对同源基因Ka/Ks值均小于1,说明其进化中经历了纯化选择。不同家族HAT理化性质存在差异,但均为亲水蛋白质,主要定位于细胞核,蛋白质二级结构主要包括α螺旋和无规则卷曲,具有典型的保守基序和特征结构域。染色体定位发现,番茄HAT基因不均匀地散布于12条染色体上,且呈两端分布,其中1号和9号染色体最多,部分基因经串联重复形成基因簇。基因表达分析发现,GNAT家族番茄特有的HAT和HAG2组基因在病菌、盐和热胁迫下具有较高的表达水平,一些基因具有病菌诱导特异性和耐盐(热)与盐(热)敏材料上表达差异性。可见,番茄HAT在结构、性质和功能上具有多样性,其在全基因组水平上的鉴定与分析为相关基因克隆利用提供了依据。
Abstract:
Histone acetylation plays an important role in the regulation of gene expression. In order to further explore histone acetyltransferase (HAT) gene in tomato, 26 HAT genes were identified by using bioinformatics method in this study. The results of cluster analysis showed that these HAT could be divided into seven groups, namely HAG, HAG1, HAG2, MCC1, HAM, HAF and HAC. Among them, 18 HAT genes were GNAT family members (GCN5, HAT1, MCC1), four HAT genes were p300/CBP family members, and one was MYST or TAFII250 family member. The Ka/Ks values of six pairs of paralogous genes were all less than one, indicating that purifying selection had occurred in evolution. The physicochemical properties of HAT in different families were different,but all of them were hydrophilic proteins, mainly located in the nucleus. Furthermore, the secondary structure of proteins mainly included alpha helix and random coil, and had typical conserved motifs and domains. Chromosome localization results showed that tomato HAT gene were unevenly distributed on 12 chromosomes and at both ends. In addition, the number of chromosome 1 and 9 was the most, and some genes formed gene clusters by tandem duplication. Results of gene expression analysis indicated that the HAT genes, which were unique in tomato, and HAG2 gene, had higher expression levels under pathogen, salt and heat stress. Also, some genes had pathogen-inducible specificity and different expression levels between resistant and sensitive materials. It can be seen that HAT gene in tomato has diversity in structure, character and function, and the genome-wide identification and analysis results providea basis for cloning and utilization of related genes.

参考文献/References:

[1]MIZZEN C A,ALLIS C D. Linking histone acetylation to transcriptional regulation [J]. Cell Metabolism Life Science,1998,54: 6-20.
[2]STERNER D E,BERGER S L. Acetylation of histones and transcription-related factors [J]. Microbiology and Molecular Biology Reviews,2000,64(2): 435-459.
[3]MIZZEN C A,YANG X J,KOKUBO T,et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity [J]. Cell,1996,87: 1261-1270.
[4]BANNISTER A J,KOUZARIDES T. The CBP co-activator is a histone acetyltransferase [J]. Nature,1996,384: 641-643.
[5]PANDEY R,MULLER A,NAPOLI C A,et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes [J]. Nucleic Acids Research,2002,30(23): 5036-5055.
[6]LIU X,LUO M,ZHANG W,et al. Histone acetyltransferases in rice (Oryza sativa L.): phylogenetic analysis,subcellular localization and expression [J]. BMC Plant Biology,2012,12: 145.
[7]AQUEA F,TIMMERMANN T,ARCE-JOHNSON P. Analysis of histone acetyltransferase and deacetylase families of Vitis vinifera [J]. Plant Physiology and Biochemistry,2010,48(2/3): 194-199.
[8]KORNET N,SCHERES B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis [J]. The Plant Cell,2009,21(4):1070-1079.
[9]LATRASSE D,BENHAMED M,HENRY Y,et al. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis [J]. BMC Plant Biology,2008,8: 121.
[10]HAN S K,SONG J D,NOH Y S,et al. Role of plant CBP/p300-like genes in the regulation of flowering time [J]. The Plant Journal,2007,49(1):103-114.
[11]CIGLIANO R A,SANSEVERINO W,CREMONA G,et al. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles [J]. BMC Genomics,2013,14: 57.
[12]SATO S,TABATA S,HIRAKAWA H,et al. The tomato genome sequence provides insights into fleshy fruit evolution [J]. Nature,2012,485(7400): 635-641.
[13]CHEN C J,XIA R,CHEN H,et al. TBtools,a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface [J]. BioRxiv,2018,3. doi: https://doi.org/10.1101/289660.
[14]HUANG S,GAO Y,LIU J,et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum [J]. Molecular Genetics and Genomics,2012,287(6): 495-513.
[15]ZHANG Z,LI J,ZHAO X Q,et al. KaKs_calculator: calculating Ka and Ks through model selection and model averaging [J]. Genomics Proteomics Bioinformatics,2006,4: 259-263.
[16]李涛,苏慧慧,李植良,等.番茄HDACs家族基因在胁迫条件下的表达分析[J].热带作物学报,2015,36(11):1994-2001.
[17]WATERBORG J H. Plant histone acetylation: in the beginning [J]. Biochimica et Biophysica Acta,2011,1809: 353-359.
[18]刘云飞,万红建,韦艳萍,等.番茄NBS-LRR抗病基因家族全基因组分析[J].核农学报,2014,28(5):790-799.
[19]刘潮,韩利红,宋培兵,等.辣椒类甜蛋白基因家族鉴定及表达分析[J].江苏农业学报,2018,34(1):122-129.
[20]YANG Z F,ZHOU Y,WANG X F,et al. Genome-wide comparative phylogenetic and molecular evolutionary analysis of tubby-like protein family in Arabidopsis,rice,and poplar [J]. Genomics,2008,92(4): 246-253.
[21]向贵生,王开锦,晏慧君,等.蔷薇科植物MLO蛋白家族的生物信息学分析[J].基因组学与应用生物学,2018,37(5):2043-2059.

相似文献/References:

[1]赵丽萍,李永灿,赵统敏,等.灰霉菌毒素诱导番茄抗性突变体及相关防御酶活性[J].江苏农业学报,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
 ZHAO Li-ping,LI Yong-can,ZHAO Tong-min,et al.Resistant mutant induced by toxin of Botrytis cinerea in tomato and the activities of related defensive enzymes[J].,2016,(03):631.[doi:10.3969/j.issn.1000-4440.2016.03.023]
[2]李亚茹,王银磊,赵丽萍,等.番茄ty-5和 Mi-1基因多重 PCR 体系的建立[J].江苏农业学报,2016,(04):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
 LI Ya-ru,WANG Yin-lei,ZHAO Li-ping,et al.Identification of ty-5 gene and Mi-1 gene by multiplex PCR in tomato[J].,2016,(03):869.[doi:10.3969/j.issn.100-4440.2016.04.024]
[3]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(03):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[4]姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,(02):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
 JIANG Jing,WANG Yin-lei,ZHAO Li-ping,et al.Selection of tomato reference genes for qRT-PCR[J].,2017,(03):389.[doi:doi:10.3969/j.issn.1000-4440.2017.02.024]
[5]罗伟君,唐琳,周佳丽,等.纳米锌肥对番茄果实锌含量与品质的强化[J].江苏农业学报,2016,(01):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
 LUO Wei-jun,TANG Lin,ZHOU Jia-li,et al.Improvement of zinc concentration and quality of tomato fruit by nano zinc fertilizer[J].,2016,(03):184.[doi:10.3969/j.issn.1000-4440.2016.01.028 ]
[6]乔俊卿,陈志谊,梁雪杰,等.枯草芽孢杆菌Bs916在番茄根部的定殖[J].江苏农业学报,2015,(06):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
 QIAO Jun-qing,CHEN Zhi-yi,LIANG Xue-jie,et al.Colonization of Bacillus subtilis Bs916 on tomato root[J].,2015,(03):1278.[doi:doi:10.3969/j.issn.1000-4440.2015.06.013]
[7]翟亚明,魏丽萍,杨倩.不同调控方式对设施盐渍化土壤特性和番茄产量及品质的影响[J].江苏农业学报,2015,(04):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
 ZHAI Ya-ming,WEI Li-ping,YANG Qian.Effects of regulatory measures on characters of greenhouse saline soil and tomato yield and quality[J].,2015,(03):871.[doi:10.3969/j.issn.1000-4440.2015.04.025]
[8]杨玛丽,赵统敏,余文贵,等.转基因 RNAi 技术在番茄研究中的应用[J].江苏农业学报,2015,(01):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
 YANG Ma-li,ZHAO Tong-min,YU Wen-gui,et al.Progress in RNA interference technique applied in tomato[J].,2015,(03):217.[doi:10.3969/j.issn.1000-4440.2015.01.034]
[9]唐玉新,曲萍,陆岱鹏,等.适合机械化移栽的番茄穴盘育苗基质配方筛选[J].江苏农业学报,2017,(06):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
 TANG Yu-xin,QU Ping,LU Dai-peng,et al.Screening of tomato plug seedling substrates proportion suitable for mechanized transplanting[J].,2017,(03):1342.[doi:doi:10.3969/j.issn.1000-4440.2017.06.021]
[10]姜静,王银磊,李亚茹,等.江苏省及其他地区番茄黄化曲叶病毒的分子鉴定及序列分析[J].江苏农业学报,2018,(01):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]
 JIANG Jing,WANG Yin-lei,LI Ya-ru,et al.Molecular identification and sequence analysis of tomato yellow leaf curl virus in Jiangsu province and its peripheral area[J].,2018,(03):238.[doi:doi:10.3969/j.issn.1000-4440.2018.01.035]

备注/Memo

备注/Memo:
收稿日期:2019-11-20基金项目:浙江省高等学校访问学者项目(FX2018147);浙江省农业(蔬菜)新品种选育重大科技专项子课题(2016C02051-1-2);温州市科技计划项目(2019ZX007)作者简介:史建磊(1982-),男,河北张家口人,硕士,副教授,研究方向为蔬菜遗传育种与生物技术。(E-mail)sjlhebau@163.com通讯作者:宰文珊,(E-mail)t000606@wzvcst.edu.cn
更新日期/Last Update: 2020-07-14