参考文献/References:
[1]李梅.水果分拣技术的研究现状与发展[J].江苏理工学院学报,2018,24(2):121-124.
[2]AMIN N,AMIN T G,ZHANG Y D. Image-based deep learning automated sorting of date fruit[J]. Postharvest Biology and Technology,2019,153:133-141.
[3]SAJAD S,YOUSEF A G,GINS G M. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms[J]. Information Processing in Agriculture,2018,5(1):162-172.
[4]王海青,姬长英,顾宝兴,等.基于机器视觉和支持向量机的温室黄瓜识别[J].农业机械学报,2012,43(3):163-167,180.
[5]赵娟,彭彦昆,SAGAR DHAKAL,等.基于机器视觉的苹果外观缺陷在线检测[J].农业机械学报,2013,44(S1):260-263.
[6]胡发焕,董增文,匡以顺.基于机器视觉的脐橙品质在线分级检测系统[J].中国农业大学学报,2016,21(3):112-118.
[7]MEGHA P A, LAKSHMANA. Computer vision based fruit grading system for quality evaluation of tomato in agriculture industry[J]. Procedia Computer Science,2016,79:426-433.
[8]卢勇威. 基于机器视觉的水果分拣系统[J].装备制造技术,2017(3):163-165,168.
[9]邓立苗,韩仲志,徐艳,等. 基于机器视觉的马铃薯智能分级系统[J].食品与机械,2014,30(5):144-146.
[10]HUBEL D H,WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. The Journal of Physiology, 1962, 160(1):106-154.
[11]HINTON G E,OSINDERO S,THE Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18 (7): 1527-1554.
[12]郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36.
[13]施杰,李欢,果霖,等. 基于EMD和包络解调的轴承故障诊断系统研究[J].煤矿机械,2015,36(6):309-312.
[14]孙小明. 基于LabVIEW和Matlab混合编程的滚动轴承故障诊断系统[J].电子科技,2018,31(7):11-14.
[15]伍锡如,雪刚刚,刘英璇. 基于深度学习的水果采摘机器人视觉识别系统设计[J].农机化研究,2020,42(2):177-182,188.
[16]SMITH L N. Cyclical learning rates for training neural networks[C]//IEEE. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa,USA:IEEE, 2017:464-472.
[17]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251-255.