[1]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358-365.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(02):358-365.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
点击复制

K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年02期
页码:
358-365
栏目:
耕作栽培·资源环境
出版日期:
2020-04-30

文章信息/Info

Title:
K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content
作者:
朱淑鑫1杨宸1顾兴健1张永春2艾玉春2徐焕良1
(1.南京农业大学信息科技学院,江苏南京210095;2.江苏省农业科学院农业资源与环境研究所,江苏南京210014)
Author(s):
ZHU Shu-xin1YANG Chen1GU Xing-jian1ZHANG Yong-chun2AI Yu-chun2XU Huan-liang1
(1.College of Information Technology, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
土壤高光谱连续投影法(SPA)K-means聚类分析法BP神经网络模型
Keywords:
soilhyper-spectrumsuccessive projection algorithm(SPA)K-means clustering analysisBP neural network prediction models
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2020.02.015
文献标志码:
A
摘要:
为解决在土壤速效钾含量的高光谱定量预测分析过程中,光谱数据维数高、冗余度较大等问题,提出了一种结合K均值算法(K-means)和连续投影算法(SPA)的高光谱特征波段选择方法。该算法首先将全波段数据分别根据不同的距离度量进行K-means聚类分析,之后对聚类后的每个波段簇分别使用SPA法提取其中的特征波段。对全波段组合、传统SPA法提取的特征波段组合以及结合K-means聚类与SPA法提取的特征波段组合分别建立土壤速效钾含量的BP神经网络预测模型,通过对比模型预测效果来比较特征波段选择方法的性能。以盐城市348份土壤样品进行试验,结果表明,结合K均值算法与连续投影算法的特征波段选择方法可以有效地解决光谱预测分析过程中的数据冗余问题,实现对土壤速效钾含量快速精确预测分析。
Abstract:
In order to solve the problems of high dimensionality and redundancy of hyperspectral spectral data in hyperspectral quantitative prediction and analysis of soil available potassium content, a hyperspectral band selection method based on K-means algorithm and successive projection algorithm(SPA) was proposed. Firstly, the full-band data were clustered by K-means based on different distance measures, and then the characteristic bands were extracted by SPA method for each band cluster after clustering. BP neural network prediction models of soil available potassium content were established for full-band combination, combination of characteristic bands extracted by traditional SPA method and combination of characteristic bands extracted by K-means clustering and SPA, respectively. The performance of characteristic band selection methods was evaluated by comparing the prediction effects of the models. The 348 soil samples from Yancheng City were experimented. The characteristic band selection method based on K-means algorithm and successive projection algorithm can effectively solve the problem of data redundancy in the process of spectral prediction and analysis, and achieve the rapid and accurate prediction and analysis of soil available potassium content.

参考文献/References:

[1]祁亚琴,吕新,邵玉林,等. 基于高光谱数据提取土壤养分信息的研究进展[J]. 中国农学通报, 2014, 30(12):28-31.
[2]王跃明,贾建鑫,何志平,等. 若干高光谱成像新技术及其应用研究[J]. 遥感学报, 2016, 20(5):850-857.
[3]刘明博,唐延林,李晓利,等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J].红外与激光工程,2014,43(4):1265-1271.
[4]王武,王建明,李颖,等. 近红外特征波长筛选在勾兑梨汁中原汁含量的快速检测中的应用[J].光谱学与光谱分析,2017,37(10):3058-3062.
[5]陈定星. 连续投影法应用于土壤有机质NIR光谱分析的波长选择[D].广州:暨南大学,2013.
[6]林滨. K-means聚类的多种距离计算方法的文本实验比较[J].福建工程学院学报,2016,14(1):80-85.
[7]周本金,陶以政,纪斌,等. 最小化误差平方和K-means初始聚类中心优化方法[J].计算机工程与应用,2018,54(15):48-52.
[8]陈磊磊. 不同距离测度的K-means文本聚类研究[J].软件,2015,36(1):56-61.
[9]王瑛瑛,宋良图. 土壤有机质近红外光谱分析的波段优选[J].仪表技术,2014(5):4-6.
[10]郝勇,孙旭东,王豪. 基于改进连续投影算法的光谱定量模型优化[J].江苏大学学报,2013,34(1):49-53.
[11]LIU K, CHEN X J, LI L M, et al. A consensus successive projections algorithm-multiple linear regression method for analyzing near infrared spectra[J]. Analytica Chimica Acta,2015,858:16-23.
[12]陈思明,毛艳玲,邹小兴,等. 基于不同建模方法的湿地土壤有机质含量多光谱反演[J].土壤通报,2018,49(1):16-22.
[13]杨红飞,郑黎明,郜中要,等. 砂姜黑土土壤有机碳高光谱特征与定量估算模型的研究[J].安徽农业大学学报,2018,45(1):101-109.
[14]乔星星,冯美臣,杨武德,等. SG平滑处理对冬小麦地上干生物量光谱监测的影响[J].山西农业科学,2016,44(10):1450-1454.
[15]王建仁,马鑫,段刚龙. 改进的K-means聚类k值选择算法[J].计算机工程与应用,2019,55(8):27-33.
[16]曹文涛,康日斐,王集宁,等. 基于高光谱遥感的土壤氯化钠含量监测[J].江苏农业学报,2016,32(4):817-823.
[17]葛亮,王斌,张立明. 基于波段聚类的高光谱图像波段选择[J].计算机辅助设计与图形学学报,2012,24(11):1447-1454.
[18]张悦,官云兰. 聚类与自适应波段选择结合的高光谱图像降维[J].遥感信息,2018,33(2):66-70.
[19]纪文君,李曦,李成学,等. 基于全谱数据挖掘技术的土壤有机质高光谱预测建模研究[J].光谱学与光谱分析,2012,32(9):2393-2398.
[20]李冠稳,高小红,肖能文,等. 特征变量选择和回归方法相结合的土壤有机质含量估算[J].光学学报,2019,39(9):361-371.
[21]GRIGORIOS T,ARISTIDIS L. The MinMax K-means clustering algorithm[J]. Pattern Recognition,2014,47(7): 2505-2516.
[22]乔天,吕成文,肖文凭,等. 基于遗传算法的土壤质地高光谱预测模型研究[J].土壤通报,2018,49(4):773-778.

相似文献/References:

[1]刘志刚,徐勤超.基质破碎度对光谱法检测基质含水率的影响[J].江苏农业学报,2017,(05):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
 LIU Zhi-gang,XU Qin-chao.Influences of substrate fragmentation degree on substrate water contents detected by hyper-spectral technology[J].,2017,(02):1051.[doi:doi:10.3969/j.issn.1000-4440.2017.05.014]
[2]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(02):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[3]郑曼迪,熊黑钢,乔娟峰,等.基于综合光谱指数的不同程度人类干扰下土壤有机质含量预测[J].江苏农业学报,2018,(05):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
 ZHENG Man-di,XIONG Hei-gang,QIAO Juan-feng,et al.Prediction of soil organic matter content based on comprehensive spectral index at different levels of human disturbance[J].,2018,(02):1048.[doi:doi:10.3969/j.issn.1000-4440.2018.05.012]
[4]芦兵,孙俊,毛罕平,等.高光谱和图像特征相融合的生菜病害识别[J].江苏农业学报,2018,(06):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
 LU Bing,SUN Jun,MAO Han-ping,et al.Disease recognition of lettuce with feature fusion based on hyperspectrum and image[J].,2018,(02):1254.[doi:doi:10.3969/j.issn.1000-4440.2018.06.008]
[5]彭云霄,彭炜东,余江,等.大田与盆栽条件下重金属镉赋存形态差异[J].江苏农业学报,2019,(06):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
 PENG Yun-xiao,PENG Wei-dong,YU Jiang,et al.Differences of heavy metal cadmium fractions in field-pot planting[J].,2019,(02):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
[6]王婷,刘振华,彭一平,等.华南地区土壤有机质含量高光谱反演[J].江苏农业学报,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
 WANG Ting,LIU Zhen-hua,PENG Yi-ping,et al.Predicting soil organic matter content in South China based on hyperspectral reflectance[J].,2020,(02):350.[doi:doi:10.3969/j.issn.1000-4440.2020.02.014]
[7]苗梦珂,王宝山,李长春,等.基于连续小波变换的冬小麦叶片最大净光合速率遥感估算[J].江苏农业学报,2020,(03):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
 MIAO Meng-ke,WANG Bao-shan,LI Chang-chun,et al.Remote sensing estimation of maximum net photosynthetic rate of winter wheat leaves based on continuous wavelet transform[J].,2020,(02):544.[doi:doi:10.3969/j.issn.1000-4440.2020.03.003]
[8]陶惠林,冯海宽,徐良骥,等.基于无人机高光谱遥感数据的冬小麦生物量估算[J].江苏农业学报,2020,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
 TAO Hui-lin,FENG Hai-kuan,XU Liang-ji,et al.Winter wheat biomass estimation based on hyperspectral remote sensing data of unmanned aerial vehicle(UAV)[J].,2020,(02):1154.[doi:doi:10.3969/j.issn.1000-4440.2020.05.012]
[9]杨雍康,药栋,李博,等.微生物群落在修复重金属污染土壤过程中的作用[J].江苏农业学报,2020,(05):1322.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
 YANG Yong-kang,YAO Dong,LI Bo,et al.Effect of microbial community in the process of remediation of heavy metal pollution in soil[J].,2020,(02):1322.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
[10]彭玉娇,崔学宇,邵元元,等.不同树龄沙田柚果园土壤肥力、叶片养分和土壤细菌群落的特征[J].江苏农业学报,2021,(02):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]
 PENG Yu-jiao,CUI Xue-yu,SHAO Yuan-yuan,et al.Characteristic of soil fertility, leaf mineral nutrients and bacterial community in Shatian pomelo orchards of different tree ages[J].,2021,(02):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]

备注/Memo

备注/Memo:
收稿日期:2019-08-19基金项目:中央高校基本科研业务费专项资金项目(KYGL201808);江苏省农业科技自主创新基金项目[CX(17)1001]作者简介:朱淑鑫(1978-),女,江苏盐城人,硕士,副教授,主要从事农业信息化与土壤数据研究。(E-mail)zsx@njau.edu.cn通讯作者:徐焕良, (E-mail)huanliangxu@njau.edu.cn
更新日期/Last Update: 2020-05-18