[1]杨雍康,药栋,李博,等.微生物群落在修复重金属污染土壤过程中的作用[J].江苏农业学报,2020,(05):1322-1331.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
 YANG Yong-kang,YAO Dong,LI Bo,et al.Effect of microbial community in the process of remediation of heavy metal pollution in soil[J].,2020,(05):1322-1331.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
点击复制

微生物群落在修复重金属污染土壤过程中的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年05期
页码:
1322-1331
栏目:
综述
出版日期:
2020-10-31

文章信息/Info

Title:
Effect of microbial community in the process of remediation of heavy metal pollution in soil
作者:
杨雍康药栋李博李明锐湛方栋祖艳群李元
(云南农业大学资源与环境学院,云南昆明650201)
Author(s):
YANG Yong-kangYAO DongLI BoLI Ming-ruiZHAN Fang-dongZU Yan-qunLI Yuan
(College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China)
关键词:
土壤重金属污染微生物重金属耐性
Keywords:
soilheavy metal contaminationmicroorganismheavy metal tolerance
分类号:
X592
DOI:
doi:10.3969/j.issn.1000-4440.2020.05.032
文献标志码:
A
摘要:
总结了几种具有重金属耐性的微生物及耐性机制,并分析了微生物群落在重金属污染土壤修复过程中的作用。微生物主要以2种方式强化植物对重金属污染土壤的修复效果:一是微生物对重金属具有吸附作用,减轻土壤中重金属对植物的毒害;二是分泌有机酸及植物生长所需的营养物质促进超富集植物对重金属的吸收。耐受重金属的微生物主要以细菌居多,可能是因为细菌对环境具有更强的适应能力,在极端环境胁迫下具有更完善的抗性机制。微生物对重金属具有耐性是因为微生物可以分泌螯合剂与重金属生成螯合物,或通过铁载体络合作用等途径降低重金属的生物毒性,减轻重金属对微生物的危害。微生物对重金属污染土壤的修复具有显著影响,所以在修复过程中可以强化微生物功能。要重点研究根际微生物、根系和介质载体三者之间复合功能,结合污染土壤类型与植物群落配置的特点筛选耐受或吸附重金属的菌种和菌群。
Abstract:
Several heavy metal-tolerant microorganisms and their tolerant mechanisms were summarized,and the role of microbial communities in the process of heavy metal contaminated soil remediation was analyzed. The repairing effects of plants on heavy metal contaminated soils was mainly strengthened by microorganisms in two ways. In one way, microorganisms could absorb heavy metals and relieve the toxicity of heavy metals in soil to plants. In the other way, microorganisms could secrete organic acids and nutrients needed in plants growth to promote the absorption of heavy metals by hyperaccumulators. Most of the heavy metal-tolerant microorganisms were bacteria, the reason may be that bacteria have stronger adaptability to the environment and have more perfect resistant mechanism under extreme environmental stresses. Microorganisms were resistant to heavy metals because they can secrete chelating agents to form chelates with heavy metals, or reduce the biotoxicity of heavy metals by means of iron carrier complexation, and reduce the harm of heavy metals to microorganisms. Microorganisms had a significant impact on the repair of heavy metal contaminated soils, so the function of microorganisms could be enhanced during the process of repair. The composite functions between rhizosphere microorganisms, roots and media carriers should be studied with focus, and the microbial strains and floras that can tolerate or adsorb heavy metals can be screened by comprehensive consideration of the contaminated soil types with the allocation features of plant communities.

参考文献/References:

[1]李春芳,王菲,曹文涛,等. 龙口市污水灌溉区农田重金属来源、空间分布及污染评价[J]. 环境科学, 2017, 38(3): 1018-1027.
[2]曾希柏,徐建明,黄巧云,等. 中国农田重金属问题的若干思考[J]. 土壤学报, 2013, 50(1): 186-194.
[3]吴志能,谢苗苗,王莹莹,等. 我国复合污染土壤修复研究进展[J]. 农业环境科学学报, 2016, 35(12): 2250-2259.
[4]樊霆,叶文玲,陈海燕,等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736.
[5]ASSUNO A G L, MARTINS P D C, DE FOLTER S, et al. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens[J]. Plant, Cell & Environment, 2001, 24(2): 217-226.
[6]串丽敏,赵同科,郑怀国,等. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014, 37(S2): 213-222.
[7]王陈丝丝,马友华,于倩倩,等. 钝化剂对农田土壤重金属形态与其稳定性影响研究[J]. 中国农学通报, 2016, 32(1): 172-177.
[8]黄益宗,郝晓伟,雷鸣,等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417.
[9]陈寻峰,李小明,陈灿,等.砷污染土壤复合淋洗修复技术研究[J]. 环境科学, 2016, 37(3): 1147-1155.
[10]孙朋成,黄占斌,唐可,等. 土壤重金属污染治理的化学固化研究进展[J]. 环境工程, 2014, 32(1): 158-161.
[11]吴烈善,曾东梅,莫小荣,等. 不同钝化剂对重金属污染土壤稳定化效应的研究[J]. 环境科学,2015,36(1): 309-313.
[12]刘志培,刘双江. 我国污染土壤生物修复技术的发展及现状[J]. 生物工程学报,2015,31(6): 901-916.
[13]RASCIO N,NAVARI-IZZO F. Heavy metal hyperaccumulating plants: how and why dothey do it? And what makes them so interesting?[J]. Plant Science,2011,180(2): 169-181.
[14]杨启良,武振中,陈金陵,等. 植物修复重金属污染土壤的研究现状及其水肥调控技术展望[J]. 生态环境学报,2015,24(6); 1075-1084.
[15]韦朝阳,陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报,2001,21(7): 1196-1203.
[16]聂亚平,王晓维,万进荣,等. 几种重金属(Pb、Zn、Cd、Cu)的超富集植物种类及增强植物修复措施研究进展[J]. 生态科学,2016,35(2): 174-182.
[17]LOUKIDOU M X,MATIS K A,ZOUBOULIS A I,et al. Removal of As (V) from wastewaters by chemically modified fungal biomass[J]. Water Research,2003,37(18): 4544-4552.
[18]KRUMINS J A,GOODEY N M,GALLAGHER F. Plant-soil interactions in metal contaminated soils[J]. Soil Biology and Biochemistry,2015,80: 224-231.
[19]RAJKUMAR M,SANDHYA S,PRASAD M N V,et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnology Advances,2012,30(6): 1562-1574.
[20]陈静,刘荣辉,陈岩贽,等. 重金属污染对土壤微生物生态的影响[J]. 生命科学,2018,30(6): 667-672.
[21]王秀丽,徐建民,姚槐应,等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报,2003,23(1): 22-27.
[22]GRIFFITHS B S,PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community[J]. FEMS Microbiology Reviews,2013,37(2): 112-129.
[23]DENG L,ZENG G,FAN C,et al. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil[J]. Applied Microbiology and Biotechnology,2015,99(19): 8259-8269.
[24]EPELDE L,LANZEN A,BLANCO F,et al. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine[J]. FEMS Microbiol Ecology,2015,91(1): 1-11.
[25]CLIZ J,MONTSERRAT G,MART E,et al. Emerging resistant microbiota from an acidic soil exposed to toxicity of Cr,Cd and Pb is mainly influenced by the bioavailability of these metals[J]. Journal of soils and sediments, 2013,13(2): 413-428.
[26]CBRON A,ARSNE-PLOETZE F,BAUDA P,et al. Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches[J]. Microbial Ecology,2014,67(1): 129-144.
[27]李海燕,熊帜,李欣亚,等. 植物-微生物联合修复重金属污染土壤研究进展[J]. 昆明理工大学学报(自然科学版),2017,42(3): 81-88.
[28]KOLB S E,FERMANICH K J,DORNBUSH M E,et al. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal,2009,73(4): 1173-1181.
[29]崔红标,范玉超,周静,等. 改良剂对土壤铜镉有效性和微生物群落结构的影响[J]. 中国环境科学,2016,36(1): 197-205.
[30]杜志敏,郭雪白,王继雯,等. 石灰与黑麦草对Cu污染土壤的修复及对微生物群落的影响[J].农业环境科学学报,2017,36(3): 515-521.
[31]周斌,黄道友,朱奇宏,等. 施用钝化剂对镉污染稻田土壤微生物学特征的影响[J]. 农业现代化研究,2012,33(2): 234-238.
[32]钱林波,元妙新,陈宝梁. 固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学,2012,33(5): 1767-1776.
[33]戚鑫,陈晓明,肖诗琦,等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J]. 农业环境科学学报,2018,37(8): 1683-1689.
[34]罗继鹏,陶琦,吴可人,等. 超积累植物内生微生物群落组成特征及其功能研究进展[J]. 浙江大学学报(农业与生命科学版),2018,44(5): 515-529.
[35]卞方圆,钟哲科,张小平,等. 毛竹和伴矿景天对重金属污染土壤的修复作用和对微生物群落的影响[J]. 林业科学,2018,54(8): 106-116.
[36]蔡信德,仇荣亮,陈桂珠,等. 植物修复对重金属镍污染土壤微生物群落的影响[J]. 土壤学报,2006,43(6): 919-925.
[37]LUO J P,LIU Y Y,TAO Q,et al. Successive phytoextraction alters ammonia oxidation and associated microbial communities in heavy metal contaminated agricultural soils[J]. The Science of the total environment,2019,664: 616-625.
[38]DAS S,CHOU M L,JEAN J S,et al. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials,2017,325:279-287.
[39]能凤娇,吴龙华,刘鸿雁,等. 芹菜与伴矿景天间作对污泥农用锌镉污染土壤化学与微生物性质的影响[J]. 应用生态学报,2013,24(5): 1428-1434.
[40]AYANGBENRO A,BABALOLA O. A new strategy for heavy metal polluted environments: a review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health,2017,14(1): 94.
[41]MOSA K A,SAADOUN I,KUMAR K,et al. Potential biotechnological strategies for the cleanup of heavy metals and metalloids[J]. Frontiers in Plant Science,2016,7: 303.
[42]BAI J,YANG X,DU R,et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences,2014,26(10): 2056-2064.
[43]GUPTA A,JOIA J,SOOD A,et al. Microbes as potential tool for remediation of heavy metals: a review[J]. Microb Biochem Technol,2016,8(4): 364-372.
[44]王亚雄,郭瑾珑,刘瑞霞. 微生物吸附剂对重金属的吸附特性[J]. 环境科学,2001(6): 72-75.
[45]周广麒,任铮宇,杨洪泽,等. 微生物菌体对Cd2+等重金属离子的吸附研究[J]. 生物技术通报,2013(6):155-159.
[46]李同灵,黄寒娟,彭漪,等. 耐铅微生物的筛选及其吸附性[J]. 安徽农业大学学报,2018,45(4): 696-702.
[47]马莹,骆永明,滕应,等. 根际促生菌及其在污染土壤植物修复中的应用[J]. 土壤学报,2013,50(5): 1021-1031.
[48]SENEVIRATNE M,SENEVIRATNE G,MADAWALA H,et al. Role of rhizospheric microbes inheavy metal uptake by plants[M]. Cham: Springer,2017: 147-163.
[49]LAMPIS S,SANTI C,CIURLI A,et al. Promotion of arsenic phytoextraction efficiency inthe fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective[J]. Frontiers in Plant Science,2015,6: 80.
[50]MA Y,PRASAD M N V,RAJKUMAR M,et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation ofmetalliferous soils[J]. Biotechnology Advances,2011,29(2):248-258.
[51]KHAN M S,ZAIDI A,WANI P A,et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: a review[J]. Organic Farming,Pest Control and Remediation of Soil Pollutants,2009,8: 319-350.
[52]赵根成,廖晓勇,阎秀兰,等. 微生物强化蜈蚣草累积土壤砷能力的研究[J].环境科学,2010,31(2): 431-436.
[53]FISCHER K,BIPP H P. Removal of heavy metals from soil components and soils by natural chelating agents Part II Soil extraction by sugar acids[J]. Water,Air,and Soil Pollution,2002,138(1-4): 271-288.
[54]杨卓,王占利,李博文,等. 微生物对植物修复重金属污染土壤的促进效果[J]. 应用生态学报,2009,20(8): 2025-2031.
[55]MUEHE E M,WEIGOLD P,ADAKTYLOU I J,et al. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri[J]. Appl Environ Microbiol,2015,81(6): 2173-2181.
[56]赵官成,梁健,淡静雅,等. 土壤微生物与植物关系研究进展[J]. 西南林业大学学报,2011,31(1): 83-88.
[57]BELL T H,CLOUTIER-HURTEAU B,AL-OTAIBI F,et al.Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill[J]. Environmental Microbiology,2015,17(8): 3025-3038.
[58]SPAEPEN S,VANDERLEYDEN J. Auxin and plant-microbe interactions[J]. Cold Spring Harbor Perspectives in Biology,2011,3(4): a001438.
[59]艾超,孙静文,王秀斌,等. 植物根际沉积与土壤微生物关系研究进展[J]. 植物营养与肥料学报,2015,21(5): 1343-1351.
[60]陈伟立,李娟,朱红惠,等. 根际微生物调控植物根系构型研究进展[J]. 生态学报,2016,36(17):5285-5297.
[61]MA Y,PRASAD M N V,RAJKUMAR M,et al. Plant growth promoting rhizobacteria andendophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances,2011,29(2): 248-258.
[62]韩辉,王晓宇,蔡红,等. 重金属固定植物促生细菌的筛选及其阻控小麦富集重金属效应[J]. 环境科学,2019,40(7): 3339-3346.
[63]KUFFNER M,PUSCHENREITER M,WIESHAMMER G,et al. Rhizosphere bacteria affect growth and metaluptake of heavy metal accumulating willows[J]. Plant and Soil,2008,304(1/2):35-44.
[64]POLTI M A,MARIANA C A,MARA J A,et al. Soil chromium bioremediation: Synergic activity of actinobacteria and plants[J]. International Biodeterioration & Biodegradation,2011,65(8): 1175-1181.
[65]PANDA S H,JENA S K,DAS S,et al. Microbial interaction in mining soil[M]// Suklab L B,Pradhan N,Panda S,et al. Environmental microbial biotechnology. Germany:Springer International Publishing,2015: 223-241.
[66]NARANJARGAL S,陈国庆,陈泽裕,等. 金矿土壤重金属耐受菌的筛选鉴定及性能研究[J]. 化学与生物工程,2019(8): 31-36.
[67]杨振兴,田从魁,党晨原,等. 真菌对重金属Pb(Ⅱ),Cd(Ⅱ),As(Ⅲ)和Cr(Ⅵ)耐受性的比较研究[J]. 北京大学学报(自然科学版),2015,51(4): 667-676.
[68]刘云国,周娜,樊霆,等. 铜、锌离子抗性菌筛选及重金属作用下富集特性研究[J]. 湖南大学学报(自然科学版),2009,36(2): 80-84.
[69]耿印印,王旭梅,王红旗,等. 污染土壤中耐镉菌株的筛选、鉴定及吸附试验研究[J]. 东北农业大学学报,2010,41(11): 59-65.
[70]杨亮,郝瑞霞,吴沣,等. 耐受铅真菌的筛选及其对Pb2+吸附的初步研究[J]. 环境科学学报,2012,32(10): 2366-2374.
[71]丁巧蓓,晁元卿,王诗忠,等. 根际微生物群落多样性在重金属土壤修复中的研究[J].华南师范大学学报(自然科学版),2016,48(2):1-12.
[72]AN X L,ZHOU Q X. Bioaccumulation of heavy metals inmacrofungi and its application in ecological remediation[J]. Chinese Journal of Applied Ecology,2007,18(8): 1897-1902.
[73]李维焕,于兰兰,程显好,等. 两种大型真菌菌丝体对重金属的耐受和富集特性[J].生态学报,2011,31(5): 1240-1248.
[74]ZHANG X X,LI C J,NAN Z B. Effects of cadmium stress on seed germination and seedling growth of Elymus dahuricus infected with the Neotyphodium endophyte[J]. Science China Life Sciences,2012,55(9): 793-799.
[75]贾彤,王瑞宏,曹苗文. 白羊草Epichloё属内生真菌的分离鉴定及其重金属耐受性[J]. 生态学报,2018,38(18): 6623-6631.
[76]XU P,LENG Y,ZENG G,et al. Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology,2015,99(1): 435-443.
[77]陈保冬,孙玉青,张莘,等. 菌根真菌重金属耐性机制研究进展[J]. 环境科学,2015,36(3): 1123-1132.
[78]魏运民,李巧玲,胡留杰,等. 墨汁鬼伞对重金属铅离子的耐受与富集作用及其在铅离子胁迫下的差异表达蛋白鉴定[J]. 环境科学学报,2016,36(6): 1998-2004.
[79]CHANG M J,TAO X,GU Y H,et al. Cloning and characterization of the 14-3-3 protein gene from Ipomoea batatas (L.) Lam[J]. African Journal of Microbiology Research,2012,6(9): 1990-1999.
[80]陈亚刚,陈雪梅,张玉刚,等. 微生物抗重金属的生理机制[J]. 生物技术通报,2009(10): 60-65.
[81]张旭辉,孙斌,魏志敏,等. 2株耐镉微生物的筛选及其对镉的吸附钝化差异机制[J]. 南京农业大学学报,2019,42(5): 869-876.
[82]李哲,陈潼樾,冷粟,等.一株氧化木糖无色杆菌对Pb的生物矿化作用及其应用效果研究[J]. 农业环境科学学报,2017,36(10): 2014-2020.
[83]ZHANG J,ZHOU W,LIU B,et al. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology,2015,49(10): 5956-5964.
[84]张玉秀,王姣,柴团耀,等. 铜绿假单胞菌ZGKD2的重金属耐性机制研究[J]. 环境科学,2012,33(10):3613-3619.
[85]SCHALK I J,HANNAUER M,BRAUD A. New roles for bacterial siderophores in metal transport and tolerance[J]. Environmental Microbiology,2011,13(11): 2844-2854.
[86]REMACLE J,MUGURUZA I,FRANSOLET M. Cadmium removal by a strain of Alcaligenes denitrificans isolated from a metal-polluted pond[J]. Water Research,1992,26(7): 923-926.
[87]HUSSEIN K A,JOO J H. Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes[J]. African Journal of Microbiology Research,2013,7(20): 2288-2296.
[88]ARMENGAUD P,ZAMBAUX K,HILLS A,et al. EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture[J]. The Plant Journal,2009,57(5): 945-956.
[89]MUNKELT D,GRASS G,NIES D H. The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity[J]. Journal of Bacteriology,2004,186(23): 8036-8043.
[90]吴丹,张志鹏,马玉超. 铅锌矿区耐砷细菌的分离、鉴定及性质研究[J]. 生物技术通报,2017,33(5): 210-218.

相似文献/References:

[1]彭云霄,彭炜东,余江,等.大田与盆栽条件下重金属镉赋存形态差异[J].江苏农业学报,2019,(06):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
 PENG Yun-xiao,PENG Wei-dong,YU Jiang,et al.Differences of heavy metal cadmium fractions in field-pot planting[J].,2019,(05):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
[2]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(05):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[3]彭玉娇,崔学宇,邵元元,等.不同树龄沙田柚果园土壤肥力、叶片养分和土壤细菌群落的特征[J].江苏农业学报,2021,(02):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]
 PENG Yu-jiao,CUI Xue-yu,SHAO Yuan-yuan,et al.Characteristic of soil fertility, leaf mineral nutrients and bacterial community in Shatian pomelo orchards of different tree ages[J].,2021,(05):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]
[4]王娟娟,胡珈玮,狄霖,等.秸秆还田与氮肥运筹对水稻不同生育期土壤细菌群落结构的影响[J].江苏农业学报,2021,(06):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
 WANG Juan-juan,HU Jia-wei,DI Lin,et al.Effects of straw returning and nitrogen management on soil microbial community structure at different rice growth stages[J].,2021,(05):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
[5]王倩倩,龚兰,朱磊,等.典型兽用抗生素在土壤-叶用莴苣中的转运及风险评估[J].江苏农业学报,2021,(06):1575.[doi:doi:10.3969/j.issn.1000-4440.2021.05.027]
 WANG Qian-qian,GONG Lan,ZHU Lei,et al.Transport and risk assessment of typical veterinary antibiotics in soil-lettuce[J].,2021,(05):1575.[doi:doi:10.3969/j.issn.1000-4440.2021.05.027]
[6]沈燕,仲建锋,黄亚威,等.植物类中药材生产过程中质量安全研究进展[J].江苏农业学报,2022,38(01):268.[doi:doi:10.3969/j.issn.1000-4440.2022.01.032]
 SHEN Yan,ZHONG Jian-feng,HUANG Ya-wei,et al.Advances in the quality and safety of Chinese herbal medicines in the producing process[J].,2022,38(05):268.[doi:doi:10.3969/j.issn.1000-4440.2022.01.032]
[7]杨听雨,杨邦保,闫小龙,等.三种农药拌种后在土壤-水稻系统中的迁移和分布[J].江苏农业学报,2023,(02):405.[doi:doi:10.3969/j.issn.1000-4440.2023.02.013]
 YANG Ting-yu,YANG Bang-bao,YAN Xiao-long,et al.Migration and distribution of three pesticides in soil-rice system after seed dressing[J].,2023,(05):405.[doi:doi:10.3969/j.issn.1000-4440.2023.02.013]
[8]刘丽,魏晓,文雪峰,等.铅、镉同位素在重金属污染源解析中的应用——基于CiteSpace计量分析[J].江苏农业学报,2023,(02):557.[doi:doi:10.3969/j.issn.1000-4440.2023.02.030]
 LIU Li,WEI Xiao,WEN Xue-feng,et al.Application of lead-cadmium isotopes in the analysis of heavy metal pollution sources——based on CiteSpace quantitative analysis[J].,2023,(05):557.[doi:doi:10.3969/j.issn.1000-4440.2023.02.030]
[9]刘红江,裴晓芳,丁雯丽,等.江苏优质稻区土壤理化性状对稻米品质的影响[J].江苏农业学报,2023,(04):956.[doi:doi:10.3969/j.issn.1000-4440.2023.04.005]
 LIU Hong-jiang,PEI Xiao-fang,DING Wen-li,et al.Effect of soil physical and chemical properties on rice quality in high quality rice producing areas of Jiangsu province[J].,2023,(05):956.[doi:doi:10.3969/j.issn.1000-4440.2023.04.005]
[10]蓝志鹏,童鑫,黄宇,等.土壤中磺胺甲口恶唑吸附-解吸反应[J].江苏农业学报,2023,(04):996.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]
 LAN Zhi-peng,TONG Xin,HUANG Yu,et al.Adsorption-desorption of sulfamethoxazole in soils[J].,2023,(05):996.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]

备注/Memo

备注/Memo:
收稿日期:2019-11-22基金项目:云南省重点研发计划项目(2018BB017);云南省重点研发计划课题(2019BC001-04);云南省农田无公害生产创新团队项目(2017HC015)作者简介:杨雍康(1995-),男,云南丽江人,硕士研究生,从事土壤重金属污染修复研究。(E-mail)yyk13187812612@163.com通讯作者:李元,(E-mail)liyuan@ynau.edu.cn
更新日期/Last Update: 2020-11-16