[1]曹慧娟,张瑾瑾,杜艳,等.稻瘟病菌转录因子研究进展[J].江苏农业学报,2019,(06):1493-1500.[doi:doi:10.3969/j.issn.1000-4440.2019.06.031]
 CAO Hui-juan,ZHANG Jin-jin,DU Yan,et al.Research progress of transcription factors in the rice blast fungus[J].,2019,(06):1493-1500.[doi:doi:10.3969/j.issn.1000-4440.2019.06.031]
点击复制

稻瘟病菌转录因子研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1493-1500
栏目:
综述
出版日期:
2019-12-31

文章信息/Info

Title:
Research progress of transcription factors in the rice blast fungus
作者:
曹慧娟1张瑾瑾12杜艳1齐中强1俞咪娜1刘永锋12
(1.江苏省农业科学院植物保护研究所,江苏南京210014; 2.南京农业大学植物保护学院,江苏南京210095)
Author(s):
CAO Hui-juan1ZHANG Jin-jin12DU Yan1QI Zhong-qiang1YU Mi-na1LIU Yong-feng12
(1.Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
稻瘟病菌转录因子生长发育致病性
Keywords:
Magnaportheoryzaetranscription factorsdevelopmentpathogenicity
分类号:
S435.111.4+1
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.031
文献标志码:
A
摘要:
由稻瘟病菌侵染引起的水稻稻瘟病是严重危害世界各地区水稻安全生产的毁灭性真菌病害。转录因子是保证目的基因在特定时间及空间正确表达的调节因子,在不同生物体基因组序列中占有相当的比重。近年来陆续对稻瘟病菌中不同家族转录因子的生物学功能及其参与的调控网络进行了相关研究,结果显示转录因子在稻瘟病菌的生长发育和致病过程中扮演着重要角色,这对深入阐明稻瘟病菌的致病机制和提出新的防控策略提供了理论依据。本文对近年来稻瘟病菌不同家族转录因子的相关研究进展进行了综述。
Abstract:
Rice blast caused by rice blast fungus Magnaporthe oryzae is a destructive disease spreading in cultivated rice globally. Transcription factors (TFs) are the regulators that ensure the correct expression of target genes at a specific time and space, and occupy a considerable proportion in the genome sequence of different organisms.In recent years, the biological functions and regulatory networks of different TFs have been studied. The results showed that TFs played an important role in the development and pathogenesis process of M.oryzae. This provides a theoretical basis for further clarifying the infection mechanism and proposing new prevention strategies of the rice blast fungus. This paper reviews the research progress of different TF family in M. oryzae.

参考文献/References:

[1]宋兆强,刘艳,王宝祥,等. 稻瘟病抗性基因Pi-ta、Pi-b、Pi54 和Pi-km的育种利用价值评价[J].江苏农业学报,2017,33(5):968-974.
[2]SKAMNIOTI P, GURR S J. Against the grain: safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141-150.
[3]COUCH B C, FUDAL L, LEBRUN M H, et al. Origins of host-specific populations of the blast pathogen Magnaportheoryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice [J]. Genetics, 2005, 170(2): 613-630.
[4]TALBOT N J. Having a blast: exploring the pathogenicity of Magnaporthe grisea[J]. Trends in Microbiology, 1995, 3(1): 9-16.
[5]CARACUEL-RIOS Z, TALBOT N J. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea[J]. Current Opinion in Microbiology, 2007, 10(4): 339-345.
[6]DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J]. Nature, 2005, 434(7036): 980-986.
[7]DEAN R, VANKAN J A, PRETORIUS Z A, et al. The Top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
[8]王云锋,王春梅,王长秘,等. 外源水杨酸对稻瘟病菌效应蛋白BAS4过表达菌株耐受性的影响[J]. 南方农业学报,2017,48(12):2169-2175.
[9]HAMER J E, HOWARD R J, CHUMLEY F G, et al. A mechanism for surface attachment in spores of a plant pathogenic fungus [J]. Science, 1988, 239(4837): 288-290.
[10]WANG Z Y, SOANES D M, KERSHAW M J, et al. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection [J]. Molecular Plant-Microbe Interactions, 2007, 20(5): 475-491.
[11]HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(24): 11281-11284.
[12]HOWARD R J, VALENT B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea [J]. Annual Review of Microbiology, 1996, 50: 491-512.
[13]朱玉贤, 李毅, 郑晓峰.现代分子生物学 [M].北京: 高等教育出版社, 2007:296-306.
[14]LEWIN B. Genes IX [M]. Sudbury:Jones and Bartlett Publishers, 2008:640-643.
[15]PARK S Y, CHOI J, LIN S E, et al. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus [J]. PLoS Pathogens, 2013, 9(6): e1003350.
[16]ZDOBNOV E M, APWEILER R. Inter Pro Scan-an integration platform for the signature-recognition methods in Inter Pro [J]. Bioinformatics, 2001, 17(9): 847-848.
[17]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105-2110.
[18]KAESTNER K H, KNOCHEL W, MARTINEZ D E. Unified nomenclature for the winged helix/forkhead transcription factors [J]. Genes Development, 2000, 14(2): 142-146.
[19]JOHNSTON S A, HOPPER J E. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose melibiose regulon[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(22): 6971-6975.
[20]MACPHERSON S, LAROCHELLE M, TURCOTTE B. A fungal family of transcriptional regulators: the zinc cluster proteins [J]. Microbiology and Molecular Biology Reviews, 2006, 70(3): 583-588.
[21]GULSHAN K, MOYEROWLEY W S. Multidrug resistance in fungi [J]. Eukaryotic Cell, 2007, 6(11): 1933-1942.
[22]BROWN D W, BUTCHKO R A, BUSMAN M, et al. The fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production [J]. Eukaryotic Cell, 2007, 6(7): 1210-1218.
[23]GALHANO R, IIIANA A, RYDER L S, et al. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus [J]. PLoS Pathogens, 2017, 13(7): e1006516.
[24]DAGDAS Y F, YOSHINO K, DAGDAS G, et al. Septin-mediated plant cell invasion by the rice blast fungus,Magnaporthe oryzae [J]. Science, 2012, 336: 1590-1595.
[25]BIN YUSOF M T, KERSHAW M J, SOANES D M, et al. FAR1 and FAR2 regulate the expression of genes associated with lipid metabolism in the rice blast fungus Magnaportheoryzae [J]. PLoS ONE, 2014, 9(6): e99760.
[26]KLAUBAUF S, ZHOU M M, LEBRUN M, et al. A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae(Magnaporthe oryzae) [J]. FEBS Letters, 2016, 590(4): 550-558.
[27]BATTAGLIA E, KLAUBAUF S, VALLET J, et al. Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae[J]. Fungal Genetics and Biology, 2013, 57: 76-84.
[28]CHUNGH, CHOI J, PARK S Y, et al. Two conidiation-related Zn(II)(2)Cys(6) transcription factor genes in the rice blast fungus [J]. Fungal Genetics and Biology, 2013, 61: 133-141.
[29]LU J P, CAO H J, ZHANG L L, et al. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus [J]. PLoS Pathogens, 2014, 10(10): e1004432.
[30]曹慧娟. 稻瘟病菌Zn2Cys6和bHLH家族转录因子功能分析[D]. 杭州:浙江大学,2015.
[31]BRETH B, ODENBACH D, YEMELIN A, et al. The role of the Tra1p transcription factor of Magnaporthe oryzae in spore adhesion and pathogenic development [J]. Fungal Genetics and Biology, 2013, 57: 11-22.
[32]TSUJI G, KENMOCHI Y, TAKANO Y, et al. Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner [J]. Molecular Microbiology, 2000, 38(5): 940-954.
[33]PABO C O, PEISACH E, GRANT R A. Design and selection of novel Cys2His2 zinc finger proteins [J]. Annual Review of Biochemistry, 2001, 70(1): 313-340.
[34]KIM S, HU J, OH Y, et al. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus [J]. PLoS Pathogens, 2010, 6(5): e1000909.
[35]CHOI J, KIM Y, KIM S, et al. MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae [J]. Fungal Genetics and Biology, 2009, 46(3): 243-254.
[36]ODENBACH D, BRETH B, THINES E, et al. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea [J]. Molecular Microbiology, 2007, 64(2): 293-307.
[37]CAO H J, HUANG P Y, ZHANG L L, et al. Characterization of 47 Cys(2)-His(2) zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. New Phytologist, 2016, 211(3): 1035-1051.
[38]ZHOU Z Z, LI G H, LIN C H, et al. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae [J]. Molecular Plant Microbe Interactions, 2009, 22(4): 402-410.
[39]ZHANG H F, ZHAO Q, GUO X X, et al. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae [J]. Molecular Plant Microbe Interactions, 2014, 27(5): 446-460.
[40]YAN X, LI Y, WANG C, et al. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. PLoS Pathogens, 2011, 7(12):e1002385
[41]TANG W, RU Y, HONG L, et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(4): 1377-1396.
[42]GLOVER J N, HARRISON S C. Crystal-structure of the heterodimericbzip transcription factor c-Fos-c-Jun bound to DNA [J]. Nature, 1995, 373(6511): 257-261.
[43]IZAWA T, FOSTER R, CHUA N H. Plant bzip protein-DNA binding-specificity [J]. Journal of Molecular Biology, 1993, 230(4): 1131-1144.
[44]GUO M, CHEN Y, DU Y, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. PLoS Pathogens, 2011, 7(2): e1001302.
[45]GUO M, GUO W, CHEN Y, et al. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae [J]. Molecular Plant Microbe Interactions, 2010, 23(8): 1053-1068.
[46]KONG S, PARK S Y, LEE Y H. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(4): 1425-1443.
[47]SCHNEUWLY S, KUROIWA A, BAUMGARTNER P, et al. Structural organization and sequence of the homeotic gene Antennapedia of Drosophila melanogaster [J]. The EMBO Journal, 1986, 5(4): 733-739.
[48]DESPLAN C, THEIS J, OFARRELL P H. The sequence specificity of homeodomain-DNA interaction [J]. Cell, 1988, 54(7): 1081-1090.
[49]SCOTT M P, TAMKUN J W, HARTZELL G W. The structure and function of the homeodomain [J].Biochimica Et Biophysica Acta, 1989, 989(1): 25-48.
[50]KIM S, PARK S Y, KIM K S, et al. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae[J]. PLoS Genetics, 2009, 5(12): e1000757.
[51]PARK G, XUE G Y, ZHENG L, et al. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2002, 15(3): 183-192.
[52]LIU W D, XIE S Y, ZHAO X H,et al. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae [J]. Molecular Plant Microbe Interactions, 2010, 23(4): 366-375.
[53]LEDENT V, VERVOORT M. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis [J]. Genome Research, 2001, 11(5): 754-770.
[54]SAILSBERY J K, ATCHLEY W R, DEAN R A. Phylogenetic analysis and classification of the fungal bHLH domain [J]. Molecular Biology and Evolution, 2012, 29(5): 1301-1318.
[55]CAO H J, HUANG P Y, YAN Y X,et al. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism [J]. Environmental Microbiology, 2018, 20(9): 3427-3441.
[56]NISHIMURAM, FUKADA J, MORIWAKI A, et al. Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea [J]. Bioscience Biotechnology and Biochemistry, 2009, 73(8): 1779-1786.
[57]QI Z Q, WANG Q, DOU X Y, et al. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae [J]. Molecular Plant Pathology, 2012, 13(7): 677-689.
[58]王大伟. 稻瘟病菌APSES转录因子Pcg2的作用及其机理的研究 [D]. 北京:中国农业大学,2014.
[59]MEHRABI R, DING S L, XU J R. MADS-box transcription factor Mig1 is required for infectious growth in Magnaporthe grisea [J]. Eukaryotic Cell, 2008, 7(5): 791-799.
[60]ZHOU X Y, LIU W D, WANG C F, et al. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae [J]. Molecular Microbiology, 2011, 80(1): 33-53.
[61]DONG Y H, ZHAO Q, LIU XY, et al. MoMyb1 is required for asexual development and tissue-specific infection in the rice blast fungus Magnaporthe oryzae [J]. BMC Microbiology, 2015, 15: 37.
[62]LU J P, FENG X X, LIU X H, et al. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea[J]. Fungal Genetics and Biology, 2007, 44(9): 819-829.

相似文献/References:

[1]齐中强,杜艳,刘永锋.Rho型GTPase激活蛋白MoBem2在稻瘟病菌分生孢子形态建成中的功能[J].江苏农业学报,2015,(05):1001.[doi:doi:10.3969/j.issn.1000-4440.2015.05.009]
 QI Zhong-qiang,DU Yan,LIU Yong-feng.Role of Rho GTPase-activated protein MoBem2 in conidium morphogenesis of Magnaporthe oryzae[J].,2015,(06):1001.[doi:doi:10.3969/j.issn.1000-4440.2015.05.009]
[2]齐中强,薛延丰,张猛,等.蛇床子素对稻瘟病菌侵染的影响[J].江苏农业学报,2015,(06):1265.[doi:doi:10.3969/j.issn.1000-4440.2015.06.011]
 QI Zhong-qiang,XUE Yan-feng,ZHANG Meng,et al.Effect of osthol on the invasion of Magnaporthe oryzae[J].,2015,(06):1265.[doi:doi:10.3969/j.issn.1000-4440.2015.06.011]
[3]王伟舵,于俊杰,聂亚锋,等.2011~2014年江苏省稻瘟病菌种群动态及毒力变化[J].江苏农业学报,2015,(02):285.[doi:10.3969/j.issn.1000-4440.2015.02.010]
 WANG Wei-duo,YU Jun-jie,NIE Ya-feng,et al.Changes of Magnaporthe oryzae population and virulence in Jiangsu province from 2011 to 2014[J].,2015,(06):285.[doi:10.3969/j.issn.1000-4440.2015.02.010]
[4]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(06):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[5]齐中强,杜艳,沈乐融,等.转录因子MoOaf22对稻瘟病菌营养生长、细胞壁完整性和胁迫应答的调控[J].江苏农业学报,2017,(06):1242.[doi:doi:10.3969/j.issn.1000-4440.2017.06.007]
 QI Zhong-qiang,DU Yan,SHEN Le-rong,et al.Regulation of transcription factor MoOaf22 in vegetative growth, cell wall integrity and stress response in Magnaporthe oryzae[J].,2017,(06):1242.[doi:doi:10.3969/j.issn.1000-4440.2017.06.007]
[6]沈乐融,齐中强,杜艳,等.江苏省稻瘟病菌致病力分化及无毒基因组成分析[J].江苏农业学报,2019,(01):42.[doi:doi:10.3969/j.issn.1000-4440.2019.01.006]
 SHEN Le-rong,QI Zhong-qiang,DU Yan,et al.Pathogenicity differentiation and composition analysis of avirulence genes of Magnaporthe oryzae in Jiangsu province[J].,2019,(06):42.[doi:doi:10.3969/j.issn.1000-4440.2019.01.006]
[7]秦文斌,戴忠良,山溪,等.甘蓝冷胁迫相关基因BobHLH18克隆与表达分析[J].江苏农业学报,2019,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
 QIN Wen-bin,DAI Zhong-liang,SHAN Xi,et al.Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)[J].,2019,(06):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
[8]唐跃辉,包欣欣,王健,等.小桐子Dof基因家族生物信息学与表达分析[J].江苏农业学报,2019,(01):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]
 TANG Yue-hui,BAO Xin-xin,WANG Jian,et al.Bioinformatics and expression analysis of the Dof gene family in physic nut[J].,2019,(06):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]
[9]潘宝贵,钱恒彦,戈伟,等.辣椒应答冷信号转导机制研究进展[J].江苏农业学报,2019,(03):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
 PAN Bao-gui,QIAN Heng-yan,GE Wei,et al.Research progress of cold signal transduction mechanisms in pepper[J].,2019,(06):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
[10]王新亮,彭玲,王健,等.苹果Dof转录因子生物信息学及其表达分析[J].江苏农业学报,2021,(02):480.[doi:doi:10.3969/j.issn.1000-4440.2021.02.026]
 WANG Xin-liang,PENG Ling,WANG Jian,et al.Bioinformatics and expression analysis of the Dof transcription factors in apple[J].,2021,(06):480.[doi:doi:10.3969/j.issn.1000-4440.2021.02.026]

备注/Memo

备注/Memo:
收稿日期:2018-10-29 基金项目:国家重点研发计划项目(2016YFD0300706);江苏省青年基金项目(BK20180296);国家自然科学基金青年基金项目(31601592) 作者简介:曹慧娟(1988-),女,山东临沂人,博士,副研究员,主要从事稻瘟病菌转录因子及稻曲病菌功能基因研究。(Tel)025-84391810;(E-mail)huijuancao@yeah.net 通讯作者:刘永锋,(Tel)025-84391002;(E-mail)liuyf@jaas.ac.cn
更新日期/Last Update: 2020-01-09