[1]刘波,杨长辉,熊龙烨,等.果园自然环境下采摘机器人路径识别方法[J].江苏农业学报,2019,(05):1222-1231.[doi:doi:10.3969/j.issn.1000-4440.2019.05.032]
 LIU Bo,YANG Chang-hui,XIONG Long-ye,et al.Path recognition method of picking robot based on orchard natural environment[J].,2019,(05):1222-1231.[doi:doi:10.3969/j.issn.1000-4440.2019.05.032]
点击复制

果园自然环境下采摘机器人路径识别方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1222-1231
栏目:
农业工程
出版日期:
2019-10-31

文章信息/Info

Title:
Path recognition method of picking robot based on orchard natural environment
作者:
刘波1杨长辉13熊龙烨1王恺1王毅12
(1.重庆理工大学机械工程学院,重庆400054;2.重庆大学机械工程学院,重庆400044;3.西安交通大学机械工程学院,陕西西安710049)
Author(s):
LIU Bo1 YANG Chang-hui13XIONG Long-ye1WANG Kai1WANG Yi12
(1. College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China;2. College of Mechanical Engineering, Chongqing University, Chongqing 400044, China; 3.School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
关键词:
果园环境采摘机器人道路中心线光照条件
Keywords:
orchard environmentpicking robotroad centerlinelight condition
分类号:
TP249
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.032
文献标志码:
A
摘要:
果园自然环境下光照条件是不同的,而不同的光照条件又会对采摘机器人的路径导航产生不同影响,针对此环境,本研究提出了一种根据光照度进行分类并使用不同算法提取道路中心线的方法。首先对图像亮度分量和光照度进行研究,并将光照度划分为低光照、正常光照和高光照3个等级。在低光照条件下通过分离出S通道,然后利用K-means与Ncut算法对其进行分割,在正常光照条件下采用Otsu算法对S通道进行分割,在高光照条件下则通过K-means与Ncut算法对Cg、Cb与Cr通道进行差分运算后的图像进行分割。将分割后的图像进行边缘检测并提取道路轮廓,并通过最小二乘法实现道路中心线的获取。最后选用150张不同光照条件下的图像进行了静态试验验证,并通过课题组自行研制的采摘机器人进行了动态试验验证,静态试验验证结果表明,3种光照条件下图像分割区域与道路真实区域的平均重合度为96.74%、平均分割误差为2.01%、平均道路中心线平均偏差为2.71像素,平均耗时为0.182 s;动态试验验证结果表明,3种光照条件下的平均横向偏移距离为3.1 cm。表明,该方法在不同光照条件下具有较高的精度和实时性,能够满足采摘机器人在自然光照条件下的路径识别及导航需求。
Abstract:
The light conditions are different in the natural environment of orchard, and different light conditions will have different effects on the path navigation of the picking robot. In response to this environment, a method of classifying road centerlines based on illumination intensity and extracting road centerlines using different algorithms was proposed. Firstly, the image brightness component and light intensity were studied, and the light intensity was divided into three levels: low light, normal light and high light. The S channel was separated under low light condition, then K-means and Ncut algorithm were used to segment it. The S channel was segmented by Otsu algorithm under normal illumination condition. Under the high-light condition, K-means and Ncut algorithm were used to segment images after differential operation in Cg, Cb and Cr channels. The segmented image was used for edge detection and road contour extraction, and the road center line was acquired by the least squares method. Finally, 150 images under different light conditions were selected for static experiment verification, and the dynamic experiments were verified by the picking robot developed by the research team. The static experimental verification results showed that the average coincidence degree between the image segmentation region and the real road region under the three light conditions was 96.74%, the average segmentation error was 2.01%, and the average deviation of average road centerline was 2.71 pixels, the average time was 0.182 s. The dynamic experimental verification results showed that the average lateral offset distance under three light conditions was 3.1 cm. These results indicate that the method has high precision and real-time, performance under different light condictions and can meet the path recognition and navigation requirements of the picking robot under natural light condition.

参考文献/References:

[1]刁智华,王会丹,宋寅卯.基于机器视觉的农田机械导航线提取算法研究[J].农机化研究,2015(2):35-39.
[2]梁传君,尚雪莲.基于立体视觉的温室作业机器人障碍物检测方法[J].江苏农业科学,2017,45(14):175-178.
[3]王新忠,韩旭,毛罕平,等.基于最小二乘法的温室番茄垄间视觉导航路径检测[J].农业机械学报,2012,43(6):161-166.
[4]王小娟,李云伍,刘得雄,等.基于机器视觉的丘陵山区田间道路虚拟中线提取方法[J].西南大学学报(自然科学版),2018,40(4):162-169.
[5]李茗萱,张漫,孟庆宽,等.基于扫描滤波的农机具视觉导航基准线快速检测方法[J].农业工程学报,2013,29(1):41-47.
[6]何洁,孟庆宽,张漫,等.基于边缘检测与扫描滤波的农机导航基准线提取方法[J].农业机械学报,2014,45(S1):265-270.
[7]王红君,陈慧,岳有军,等.基于多颜色空间分割的温室环境视觉导航路径信息提取[J].江苏农业科学,2017,45(16):202-206.
[8]宋宇,刘永博,刘路,等.基于机器视觉的玉米根茎导航基准线提取方法[J].农业机械学报,2017,48(2):38-44.
[9]高国琴,李明.基于K-means算法的温室移动机器人导航路径识别[J].农业工程学报,2014,30(7):25-33.
[10]王睿. 基于K-means算法的温室移动机器人导航路径识别[J].电子技术与软件工程,2017(23):80.
[11]孟庆宽,张漫,杨耿煌,等.自然光照下基于粒子群算法的农业机械导航路径识别[J].农业机械学报,2016,47(6):11-20.
[12]ASTRAND B,BAERVELDT A J.A vision based row-following system for agricultural field machinery[J].Mechatronics,2006,15(2):251-269.
[13]MONTALVO M, PAJARES G, GUERRERO J M, et al. Automatic detection of crop rows in maize fields with high weeds pressure[J]. Expert Systems with Applications, 2012,39(15):11889-11897.
[14]ROMEO J,PAJARES G,MONTALVO M,et al.Crop row detection in maize fields inspired on the human visual perception[J].The Scientific World Journal,2012,2012:1-10.
[15]RADCLIFFE J,COX J,BULANON D M.Machine vision for orchard navigation[J].Computers in Industry,2018,98:165-171.
[16]武星,张颖,李林慧,等.复杂光照条件下视觉导引AGV路径提取方法[J].农业机械学报,2017,48(10):15-24.
[17]毛方东,许洪斌,王毅,等.基于VB/Matlab的果园移动机器人路径识别系统[J].计算机工程,2017,43(12):309-314.
[18]孟庆宽,何洁,仇瑞承,等.基于机器视觉的自然环境下作物行识别与导航线提取[J].光学学报,2014,34(7):180-186.
[19]SHI J,MALIK J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.

相似文献/References:

[1]雷旺雄,卢军.葡萄采摘机器人采摘点的视觉定位[J].江苏农业学报,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
 LEI Wang-xiong,LU Jun.Visual positioning method for picking point of grape picking robot[J].,2020,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
[2]陈光明,孔浩然,章永年,等.苹果机器人采摘存在的关键问题及对策[J].江苏农业学报,2022,38(06):1709.[doi:doi:10.3969/j.issn.1000-4440.2022.06.030]
 CHEN Guang-ming,KONG Hao-ran,ZHANG Yong-nian,et al.Key problems and countermeasures of apple machine picking[J].,2022,38(05):1709.[doi:doi:10.3969/j.issn.1000-4440.2022.06.030]
[3]赵玉清,贾奥莹,王白娟,等.柑橘果实采摘机器人目标识别算法研究进展[J].江苏农业学报,2024,(08):1552.[doi:doi:10.3969/j.issn.1000-4440.2024.08.019]
 ZHAO Yuqing,JIA Aoying,WANG Baijuan,et al.Research progress on target recognition algorithms for citrus fruit picking robots[J].,2024,(05):1552.[doi:doi:10.3969/j.issn.1000-4440.2024.08.019]

备注/Memo

备注/Memo:
收稿日期:2018-12-13 基金项目:重庆市重点产业共性关键技术创新专项(CSTC2015zdcy-ztzx70003); 重庆市基础研究与前沿探索一般项目(cstc2018jcyjAX0071);重庆市基础科学与前沿技术研究一般项目(cstc2016jcyjA0444) 作者简介:刘波(1991-),男,河北衡水人,硕士研究生,研究方向为智能化山地农机。(E-mail)865845736@qq.com 通讯作者:王毅,(E-mail)wangyi_cqut@163.com
更新日期/Last Update: 2019-11-11