[1]潘宝贵,钱恒彦,戈伟,等.辣椒应答冷信号转导机制研究进展[J].江苏农业学报,2019,(03):743-748.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
 PAN Bao-gui,QIAN Heng-yan,GE Wei,et al.Research progress of cold signal transduction mechanisms in pepper[J].,2019,(03):743-748.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
点击复制

辣椒应答冷信号转导机制研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
743-748
栏目:
综述
出版日期:
2019-06-30

文章信息/Info

Title:
Research progress of cold signal transduction mechanisms in pepper
作者:
潘宝贵1钱恒彦12戈伟1刘金兵1郭广君1刁卫平1王述彬1
(1.江苏省农业科学院蔬菜研究所,江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.扬州大学园艺与植物保护学院,江苏扬州225009)
Author(s):
PAN Bao-gui1QIAN Heng-yan12GE Wei1LIU Jin-bing1GUO Guang-jun1DIAO Wei-ping1WANG Shu-bin1
(1.Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;2.College of Horticulture and Plant protection, Yangzhou University, Yangzhou 225009, China)
关键词:
辣椒冷害信号转导转录因子耐冷基因
Keywords:
peppercold stresssignal transductiontranscription factorscoldtolerance gene
分类号:
S641.3
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.034
文献标志码:
A
摘要:
辣椒原产中南美洲热带地区,为喜温性蔬菜作物。冷害是辣椒生产中的主要逆境因子,严重影响辣椒的生长发育。遭受冷害胁迫时,包括辣椒在内的众多植物通过多个信号转导途径调节耐冷相关基因的表达,提高植物的耐冷性。本文从冷信号感知、冷信号转导途径中关键转录因子、耐冷基因表达等方面,综述了辣椒应答冷信号的研究进展,从而为辣椒耐冷分子机制研究提供参考。
Abstract:
Pepper (Capsicum spp.), which originates from tropical region of Central and South America, is a thermophilic vegetable crop. Cold stress is one of the main environmental limitations in pepper production, which seviously affects plant growth and development. Under chilling stress, many plants, including pepper, regulate the expression of genes related to cold tolerance various signal transduction pathways to improve cold tolerance. In this paper, the research progress of response to cold stress in pepper was reviewed from the aspects of cold signal sensing, the key transcription factors and expression of coldtolerance genes in coldrelated signal transduction pathways. This paper provides reference for the study of molecular mechanism of cold tolerance in pepper.

参考文献/References:

[1]柴文臣,马蓉丽,焦彦生,等. 低温胁迫对不同辣椒品种生长及生理指标的影响[J]. 华北农学报, 2010, 25(2): 168-171.
[2]刘慧英,王祯丽,王玉华. 不同品种辣椒种子发芽和苗期耐冷性差异的研究[J]. 石河子大学学报(自然科学版), 2002, 6(1): 23-26.
[3]杨万基,蒋欣梅,高欢,等. 28高芸苔素内酯对低温弱光胁迫辣椒幼苗光合和荧光特性的影响[J]. 南方农业学报,2018,49(4):741-747.
[4]TARCHOUN N, M'HAMDI M, SILVA J A T D. Approaches to evaluate the abortion of hot pepper floral structures induced by low night temperature[J]. Europ J Hort Sci, 2012, 77(2): 78-83.
[5]MERCADO J A, REID M S, VALPUESTA V, et al. Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature[J]. Aust J Plant Physiol, 1997, 24: 759-767.
[6]王立浩,张正海,曹亚从,等. “十二五”我国辣椒遗传育种研究进展及其展望[J]. 中国蔬菜, 2016 (1): 1-7.
[7]耿三省,陈斌,张晓芬,等. 我国辣椒品种市场需求变化趋势及育种对策[J]. 中国蔬菜, 2015(3): 1-5.
[8]陈斌,张晓芬,杜和山,等. 辣椒新品种胜寒740的选育[J]. 中国蔬菜, 2018 (8): 70-72.
[9]THOMASHOW M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Biol, 1999, 50: 571-599.
[10]STEPONKUS P L. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annu Rev Plant Physiol, 1984, 35: 543-584.
[11]WANG D Z, JIN Y N, DING X H, et al. Gene regulation and signal transduction in the ICECBFCOR signaling pathway during cold stress in plants[J]. Biochemistry, 2017, 82(10): 1103-1117.
[12]THOMASHOW M F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway[J]. Plant Physiol, 2010, 154: 571-577.
[13]JANMOHAMMADI M, ZOLLA L, RINALDUCCI S. Low temperature tolerance in plants: changes at the protein level[J]. Phytochemistry, 2015, 117: 76-89.
[14]MA Y, DAI X, XU Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160: 1209-1221.
[15]YANG T, POOVAIAH B W. Calcium/calmodulinmediated signal network in plants[J]. Trends Plant Sci, 2003, 8(10): 505-512.
[16]张化生,郭晓冬,王萍. 低温胁迫下硝酸钙处理对辣椒幼苗抗冷性的影响[J]. 甘肃农业大学学报, 2008, 43(2): 66-69.
[17]武丽丽,张国斌,郁继华. CaCl2与SA对辣椒幼苗抗冷性的影响[J]. 甘肃农业大学学报, 2009, 44(6): 44-47.
[18]郭晓冬,邹志荣,张化生. 硝酸钙浸种对低温下辣椒幼苗渗透调节物质的影响[J]. 干旱地区农业研究, 2008, 26(5): 160-164.
[19]DING Y, LI H, ZHANG X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015, 32: 278-289.
[20]PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324: 1068-1071.
[21]任旭琴. 低温解除后辣椒叶片中内源激素的动态变化研究[J]. 安徽农业大学学报, 2013, 40(5): 867-870.
[22]汤日圣,黄益洪,唐现洪,等. 微生物源脱落酸(ABA)对辣椒苗耐冷性的影响[J]. 江苏农业学报, 2008, 24(4): 467-470.
[23]罗立津,徐福乐,翁华钦,等. 脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究[J]. 西北植物学报, 2011, 31(1): 94-100.
[24]张国斌,郁继华,冯致,等. NO和ABA对辣椒幼苗自毒作用缓解的生理生化机制[J]. 园艺学报, 2013, 40(3): 458-466.
[25]MEDINA J, BARGUES M, TEROL J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domaincontaining proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J]. Plant Physiol, 1999, 119: 463-469.
[26]GILMOUR S J, SEBOLT A M, SALAZAR M P, et al. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol, 2000, 124: 1854-1865.
[27]STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domaincontaining transcriptional activator that binds to the Crepeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94: 1035-1040.
[28]HSIEH T H, LEE J T, CHARNG Y Y, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiol, 2002, 130: 618-626.
[29]DOU H, XV K, MENG Q, et al. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to hightemperature stress[J]. Plant Cell Environ, 2014, 38: 61-72.
[30]HAAKE V, COOK D, RIECHMANN J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130: 639-648.
[31]王兴娥,巩振辉,李大伟,等. 冷诱导基因C重复基序结合因子4(CBF4)在辣椒中的遗传转化及抗寒性分析[J]. 农业生物技术学报, 2009, 17(5): 830-835.
[32]KIM S, AN C S, HONG Y N, et al. Coldinducible transcription factor, CaCBF, is associated with a homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.)[J]. Mol Cells, 2004, 18(3): 300-308.
[33]YANG S, TANG X F, MA N N, et al. Heterology expression of the sweet pepper CBF3 gene confers elevated tolerance to chilling stress in transgenic tobacco[J]. J Plant Physiol, 2011, 168: 1804-1812.
[34]HONG J P, KIM W T. Isolation and functional characterization of the CaDREBLP1 gene encoding a dehydrationresponsive element bindingfactorlike protein 1 in hot pepper (Capsicum annuum L. cv. Pukang)[J]. Planta, 2005, 220: 875-888.
[35]EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5): 199-206.
[36]ZOU C, JIANG W, YU D. Male gametophytespecific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. J Exp Bot, 2010, 61(14): 3901-3914.
[37]刁卫平,王述彬,刘金兵,等. 辣椒全基因组WRKY转录因子的分析[J]. 园艺学报, 2015, 42(11): 2183-2196.
[38]MOON S J, HAN S Y, KIM D Y, et al. Ectopic expression of CaWRKY1, a pepper transcription factor, enhances drought tolerance in transgenic potato plants[J]. J Plant Biol, 2014, 57: 198-207.
[39]YU B K, LEE J H, SHIN S J, et al. Molecular characterization of cold stressrelated transcription factors, CaEREBPC1, C2, C3, and CaWRKY1A from Capsicum annuum L.[J]. J Plant Biol, 2013, 56: 106-114.
[40]OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247.
[41]CHANGSONG Z, DIQIU Y. Analysis of the coldresponsive transcriptome in the mature pollen of Arabidopsis[J]. J Plant Biol, 2010, 53: 400-416.
[42]MA N N, ZUO Y Q, LIANG X Q, et al. The multiple stressresponsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiol Plantarum, 2013, 149(4): 474-486.
[43]LI X D, ZHUANG K Y, LIU Z M, et al. Overexpression of a novel NACtype tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco[J]. J Plant Physiol, 2016, 204: 54-65.
[44]DIAO W, SNYDER J C, WANG S, et al. Genomewide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, ciselements in the promoter, and interaction network[J]. Int J Mol Sci, 2018, 19(4): 1048-1061.
[45]GUO W L, WANG S B, CHEN R G, et al. Characterization and expression profile of CaNAC2 pepper gene[J]. Front Plant Sci, 2015, 6: 755.
[46]JIN H, MARTIN C. Multifunctionality and diversity within the plant MYBgene family[J]. Plant Mol Biol, 1999, 41: 577-585.
[47]DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10): 573-581.
[48]AGARWAL M, HAO Y, KAPOOR A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645.
[49]SEONG E S, GUO J, WANG M H. The chilli pepper (Capsicum annuum) MYB transcription factor (CaMYB) is induced by abiotic stresses[J]. J Plant Biochem Biot, 2008, 17(2): 193-196.
[50]THOMASHOW M F. Role of coldresponsive genes in plant freezing tolerance[J]. Plant Physiol, 1998, 118: 1-7.
[51]STEPONKUS P L, UEMURA M, JOSEPH R A, et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1998, 95: 14570-14575.
[52]ARTUS N N, UEMURA M, STEPONKUS P L, et al. Constitutive expression of the coldregulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proc Natl Acad Sci USA, 1996,93: 13404-13409.
[53]CHEN R G, JING H, GUO W L, et al. Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L.[J]. Plant Cell Rep, 2015, 34(12): 2189-2200.
[54]JING H, LI C, MA F, et al. Genomewide identification, expression diversication of dehydrin gene family and characterization of CaDHN3 in pepper (Capsicum annuum L.)[J]. PLoS ONE, 2016, 11(8): e0161073.
[55]RIO L A D. ROS and RNS in plant physiology: an overview[J]. J Exp Bot, 2015, 66(10): 2827-2837.
[56]AIRAKI M, LETERRIER M, MATEOS R M, et al. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress[J]. Plant Cell Environ, 2012, 35: 281-295.
[57]魏兵强,王兰兰,张茹,等. 辣椒TPS家族成员的鉴定与CaTPS1的表达分析[J]. 园艺学报, 2016, 43(8): 1504-1512.
[58]姜秀梅,秦勇,郭光照. 外源物质对低温胁迫下辣椒种子萌发的影响研究[J]. 新疆农业大学学报, 2013, 36(3): 229-233.
[59]DING F, WANG R. Amelioration of postharvest chilling stress by trehalose in pepper[J]. Sci Hortic, 2018, 232: 52-56.
[60]ZHANG Z, LI J, LI F, et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance[J]. Dev Cell, 2017, 43: 731-743.
[61]吕晓菡,柴伟国. 低温弱光下不同起源地辣椒幼苗光合特性的比较研究[J]. 浙江农业学报, 2014, 26(1): 48-53.
[62]吴杨洋,郝莹超,苏振华,等. 甜椒耐寒种质耐低温IL系的筛选及低温胁迫下生理应答差异[J]. 分子植物育种, 2019, 17(4): 1249-1256.
[63]杨梯丰,张少红,赵均良,等. 水稻耐冷QTL定位的比较分析[J]. 分子植物育种, 2015, 13(1): 1-15.
[64]LIU L, VENKATESH J, JO Y D, et al. Fine mapping and identification of candidate genes for the sy2 locus in a temperaturesensitive chili pepper (Capsicum chinense)[J]. Theor Appl Genet, 2016, 129: 1541-1556.
[65]COSTA F R D, PEREIRA T N S, VIT RIA A P, et al. Genetic diversity among Capsicum accessions using RAPD markers[J]. Crop Breed Appl Biot, 2006, 6: 18-23.

相似文献/References:

[1]吕敏,苏建坤,白和盛,等.桃蚜取食和机械损伤对番茄和辣椒 PAL、LOX 和 PPO 活性的诱导作用[J].江苏农业学报,2016,(06):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
 Lv?Min,SU Jian-kun,BAI He-sheng,et al.The activities of PAL, LOX and PPO in tomato and pepper plants induced by aphid herbivory and mechanical damage[J].,2016,(03):1273.[doi:doi:10.3969/j.issn.1000-4440.2016.06.013]
[2]吴淑华,赵文浩,李廷芳,等.南京辣椒上一种斑驳类型病毒病的分子鉴定[J].江苏农业学报,2015,(06):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
 WU Shu-hua,ZHAO Wen-hao,LI Ting-fang,et al.Molecular identification of a virus causing mottle symptoms in pepper leaves in Nanjing[J].,2015,(03):1284.[doi:doi:10.3969/j.issn.1000-4440.2015.06.014]
[3]郭广君,孙茜,刘金兵,等.基于辣椒基因组重测序的InDel标记开发及应用[J].江苏农业学报,2015,(06):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
 GUO Guang-jun,SUN Qian,LIU Jin-bing,et al.Development and application of pepper InDel markers based on genome re-sequencing[J].,2015,(03):1400.[doi:doi:10.3969/j.issn.1000-4440.2015.06.032]
[4]李廷芳,吴淑华,赵文浩,等.青海海东设施辣椒轻斑驳病毒的分子检测[J].江苏农业学报,2017,(04):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]
 LI Ting-fang,WU Shu-hua,ZHAO Wen-hao,et al.Molecular detection of mild mottle virus isolated from pepper in Haidong, Qinghai province[J].,2017,(03):958.[doi:doi:10.3969/j.issn.1000-4440.2017.04.036]
[5]刘潮,韩利红,宋培兵,等.辣椒类甜蛋白基因家族鉴定及表达分析[J].江苏农业学报,2018,(01):122.[doi:doi:10.3969/j.issn.1000-4440.2018.01.018]
 LIU Chao,HAN Li-hong,SONG Pei-bing,et al.Identification and expression analysis of thaumatin-like protein gene in pepper[J].,2018,(03):122.[doi:doi:10.3969/j.issn.1000-4440.2018.01.018]
[6]王运儒,秦玉燕,杨秀娟,等.40%氯虫·噻虫嗪水分散粒剂在辣椒及土壤中的残留消解动态[J].江苏农业学报,2018,(01):207.[doi:doi:10.3969/j.issn.1000-4440.2018.01.030]
 WANG Yun-ru,QIN Yu-yan,YANG Xiu-juan,et al.Dissipation of chlorantraniliprole and thiamethoxam in pepper and soil after field application in the form of 40% water dispersible granules[J].,2018,(03):207.[doi:doi:10.3969/j.issn.1000-4440.2018.01.030]
[7]张一冉,王雅楠,杨杨,等.脱落酸与水杨酸处理调节李果实抗冷性及氧化酶活性[J].江苏农业学报,2020,(02):471.[doi:doi:10.3969/j.issn.1000-4440.2020.02.030]
 ZHANG Yi-ran,WANG Ya-nan,YANG Yang,et al.Regulation of abscisic acid and salicylic acid treatments on chilling resistance and oxidase activity of plum fruit[J].,2020,(03):471.[doi:doi:10.3969/j.issn.1000-4440.2020.02.030]
[8]千春录,朱芹,高姗,等.外源褪黑素处理对采后水蜜桃冷藏品质及冷害发生的影响[J].江苏农业学报,2020,(03):702.[doi:doi:10.3969/j.issn.1000-4440.2020.03.024]
 QIAN Chun-lu,ZHU Qin,GAO Shan,et al.Effects of exogenous melatonin treatment on cold storage quality and chilling injury of postharvest peach fruit[J].,2020,(03):702.[doi:doi:10.3969/j.issn.1000-4440.2020.03.024]
[9]高晶霞,吴雪梅,牛勇琴,等.辣根素水乳剂对连作辣椒生长及土壤酶活性的影响[J].江苏农业学报,2021,(01):116.[doi:doi:10.3969/j.issn.1000-4440.2021.01.015]
 GAO Jing-xia,WU Xue-mei,NIU Yong-qin,et al.Effect of athomin water emulsion on growth and soil enzyme activities of continuous cropping pepper[J].,2021,(03):116.[doi:doi:10.3969/j.issn.1000-4440.2021.01.015]
[10]赵松松,韩馨仪,刘斌,等.交变磁场抑制香蕉冷害的作用机理分析[J].江苏农业学报,2021,(03):739.[doi:doi:10.3969/j.issn.1000-4440.2021.03.025]
 ZHAO Song-song,HAN Xin-yi,LIU Bin,et al.Mechanism analysis on the action of alternating magnetic field in inhibiting chilling injury of bananas[J].,2021,(03):739.[doi:doi:10.3969/j.issn.1000-4440.2021.03.025]

备注/Memo

备注/Memo:
收稿日期:2018-08-20 基金项目:国家重点研发计划项目(2016YFD0101704);现代农业产业技术体系建设专项资金项目(CARS-23-G42);江苏省农业重大新品种创制项目(PZCZ201714) 作者简介:潘宝贵(1974-),男,江苏盐都人,硕士,副研究员,主要从事辣椒遗传育种研究。(Tel)025-84390805;(E-mail)pantix@163.com 通讯作者:王述彬,(Tel)025-84390265;(E-mail)wangsbpep@163.com
更新日期/Last Update: 2019-06-30