参考文献/References:
[1]ELERT E. Rice by the numbers: a good grain.[J]. Nature, 2014, 514(7524): 50-51.
[2]彭如梦,朱 安,张思洁,等. 节水灌溉方式对水稻产量和稻田土壤性状的影响综述[J]. 江苏农业科学,2018,46(23):31-35.
[3]BOUMAN B. How much water does rice use?[J]. Rice Today, 2009(1): 15.
[4]周炜,张岳芳,朱普平,等. 种植制度对长江下游稻田温室气体排放的影响[J].江苏农业学报,2017,33(2):340-345.
[5]SASS R L, CICERONE R J. Photosynthate allocations in rice plants: food production or atmospheric methane?[J]. PNAS, 2002, 99(19): 11993-11995.
[6]刘建君,陈红. 黑龙江省水稻生产碳足迹分析[J]. 南方农业学报, 2018,49(8):1667-1673.
[7]陈劲松,黄健熙,林珲,等. 基于遥感信息和作物生长模型同化的水稻估产方法研究[J]. 中国科学:信息科学, 2010, 40(增刊): 173-183.
[8]ATAULKARIM S T, LIU X, LU Z, et al. Inseason estimation of rice grain yield using critical nitrogen dilution curve[J]. Field Crops Research, 2016, 195: 1-8.
[9]彭代亮. 基于统计与MODIS数据的水稻遥感估产方法研究[D]. 杭州:浙江大学, 2009.
[10]宁佐荣. 基于MODIS数据的低山丘陵区水稻估产模型研究[D]. 重庆:西南大学, 2014.
[11]ZHANG Y, YANG B, LIU X, et al. Estimation of rice grain yield from dualpolarization Radarsat2 SAR data by integrating a rice canopy scattering model and a genetic algorithm[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 57: 75-85.
[12]孙雯. 气候变暖对中国水稻生产的影响[D]. 南京:南京农业大学, 2011.
[13]张峰. 川渝地区农业气象干旱风险区划与损失评估研究[D]. 杭州:浙江大学, 2013.
[14]柯跃进,胡学玉,易卿,等. 水稻秸秆生物炭对耕地土壤有机碳及其CO2释放的影响[J]. 环境科学, 2014, 35(1): 93-99.
[15]陈印军,易小燕,方琳娜,等. 中国耕地资源与粮食增产潜力分析[J]. 中国农业科学, 2016, 49(6): 1117-1131.
[16]VAN ITTERSUM M K, LEFFELAAR P A, VAN K H, et al. On approaches and applications of the Wageningen crop models[J]. European Journal of Agronomy, 2003, 18(3): 201-234.
[17]姜群鸥. 基于AEZ模型的中国农业生产力的估算及其对耕地利用变化的响应[D]. 长沙:中南大学, 2008.
[18]于大江,刘成忠,徐文强. 基于农业生态区法(AEZ)模型的甘肃省玉米生产潜力分析[J]. 甘肃农业大学学报, 2012, 47(4): 73-77.
[19]VAN DIEPEN C A, WOLF J, VAN KEULEN H, et al. WOFOST: a simulation model of crop production[J]. Soil Use and Management, 1989, 5(1): 16-24.
[20]许小路. 基于WOFOST模型的高温热害对江苏省水稻生长及产量的影响模拟[D]. 南京:南京信息工程大学, 2015.
[21]WANG E, ROBERTSON M J, HAMMER G L, et al. Development of a generic crop model template in the cropping system model APSIM[J]. European Journal of Agronomy, 2002, 18(1): 121-140.
[22]KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[23]YUAN W P, LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural & Forest Meteorology, 2007, 143(3): 189-207.
[24]GITELSON A A, PENG Y, ARKEBAUER T J, et al. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production[J]. Journal of Plant Physiology, 2015, 177: 100-109.
[25]GITELSON A A, PENG Y, HUEMMRICH K F. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data[J]. Remote Sensing of Environment, 2014, 147(10): 108-120.
[26]JIN C, XIAO X, WAGLE P, et al. Effects of insitu and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model[J]. Agricultural & Forest Meteorology, 2015, 213(25): 240-250.
[27]GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(8): 2207-2218.
[28]ZHU X, CHEN J, GAO F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
[29]LI X, LING F, FOODY G M, et al. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps[J]. Remote Sensing of Environment, 2017, 196: 293-311.
[30]EMELYANOVA I V, MCVICAR T R, VAN NIEL T G, et al. Assessing the accuracy of blending LandsatMODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection[J]. Remote Sensing of Environment, 2013, 133(12): 193-209.
[31]BAI L, CAI J, LIU Y, et al. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin[J]. Agricultural Water Management, 2017, 188: 1-11.
[32]DONG T, LIU J, QIAN B, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49: 63-74.
[33]GRTNER P, FRSTER M, KLEINSCHMIT B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring[J]. Remote Sensing of Environment, 2016, 177: 237-247.
[34]JARIHANI A, MCVICAR T, VAN NIEL T, et al. Blending landsat and MODIS data to generate multispectral indices: a Comparison of ‘indexthenblend’ and ‘blendthenindex’ approaches[J]. Remote Sensing, 2014, 6(10): 9213-9238.
[35]林怡辉,安建国. 增城年鉴[M]. 广州:广东旅游出版社, 2016.
[36]牛忠恩,闫慧敏,黄玫,等. 基于MODISOLI遥感数据融合技术的农田生产力估算[J]. 自然资源学报, 2016,31(5):875-885.
[37]WANG H, JIA G, FU C, et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling[J]. Remote Sensing of Environment, 2010, 114(10): 2248-2258.
[38]WANG Z, XIAO X, YAN X. Modeling gross primary production of maize cropland and degraded grassland in northeastern China[J]. Agricultural and Forest Meteorology, 2010, 150(9): 1160-1167.
[39]YAN H M, FU Y L, XIAO X M, et al. Modeling gross primary productivity for winter wheatmaize double cropping system using MODIS time series and CO2 eddy flux tower data.[J]. Agriculture Ecosystems & Environment, 2009, 129(4): 391-400.
[40]ZHANG Y, YU Q, JIANG J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 2010, 14(4): 757-767.
[41]YUAN W, LIU S, YU G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010, 114(7): 1416-1431.
[42]MYNENI R B, WILLIAMS D L. On the relationship between FAPAR and NDVI[J]. Remote Sensing of Environment, 1994, 49(3): 200-211.
[43]MISSON, MONSON R K, SCHMID H P, et al. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eightday mean flux[J]. Agricultural & Forest Meteorology, 2005, 131(1): 1-12.
[44]POTTER C S, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[45]YUAN W, CHEN Y, XIA J, et al. Estimating crop yield using a satellitebased light use efficiency model[J]. Ecological Indicators, 2016, 60: 702-709.