[1]廖靖,胡月明,赵理,等.结合数据融合算法的光能利用率模型反演水稻地上部生物量[J].江苏农业学报,2019,(03):594-601.[doi:doi:10.3969/j.issn.1000-4440.2019.03.013]
 LIAO Jing,HU Yue-ming,ZHAO Li,et al.Inversion of aboveground biomass of rice by combining light use efficiency model with data fusion algorithm[J].,2019,(03):594-601.[doi:doi:10.3969/j.issn.1000-4440.2019.03.013]
点击复制

结合数据融合算法的光能利用率模型反演水稻地上部生物量()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
594-601
栏目:
耕作栽培·资源环境
出版日期:
2019-06-30

文章信息/Info

Title:
Inversion of aboveground biomass of rice by combining light use efficiency model with data fusion algorithm
作者:
廖靖1234胡月明12345赵理1234马昊翔1234王璐1234张洪亮6
(1.华南农业大学资源环境学院,广东广州510642;2.华南农业大学国土资源部建设用地再开发重点实验室,广东广州510642;3.华南农业大学广东省土地利用与整治重点实验室,广东广州510642;4.华南农业大学广东省土地信息工程技术研究中心,广东广州510642;5.青海大学农牧学院,青海西宁810016;6.贵州科学院,贵州贵阳550001)
Author(s):
LIAO Jing1234HU Yue-ming12345ZHAO Li1234MA Hao-xiang1234WANG Lu1234ZHANG Hong-liang6
(1.College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;2.Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, South China Agricultural University, Guangzhou 510642, China;3.Guangdong Provincial Key Laboratory of Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China;4.Guangdong Province Land Information Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China;5.College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;6.Guizhou Academy of Sciences, Guiyang 550001, China)
关键词:
影像融合光能利用率模型水稻地上部生物量遥感反演
Keywords:
image fusionlight use efficiency modelaboveground biomass of riceremote sensing inversion
分类号:
TP75
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.013
文献标志码:
A
摘要:
水稻作为世界范围内的重要粮食作物,其生长状况与产量信息的快速、精确获取,对保障耕地资源安全与粮食安全具有重要意义。本研究探索结合数据融合算法的光能利用率模型反演水稻地上部生物量,将增强型空间和时间自适应反射融合模型(ESTARFM)预测的水稻关键生长期数据,驱动ECLUE(Eddy covariancelight use efficiency)模型反演水稻地上部生物量,分别验证2个模型的精度。结果显示,ESTARFM算法预测值与真实值的Pearson相关系数为0.668(P<0001),对于中型耕地(11~50个Landsat像元),ESTARFM算法预测精度最为理想。ECLUE模型反演的水稻地上部生物量预测值与地面实测值Pearson相关系数为0630(P<0001)。ECLUE模型驱动数据的空间分辨率与时间分辨率是制约反演结果精度的关键因素。
Abstract:
Rice as an important food crop in the world, so the rapid and accurate acquisition of its growth status and yield information is of great significance to ensure the safety of cultivated land resources and food security. In this study, the enhanced spatial and temporal adaptive reflection fusion model (ESTARFM) was used to predict the key growth data of rice, and the eddy covariancelight use efficiency (ECLUE) model was used to invert rice aboveground biomass. The accuracy of the two models was verified, respectively. The results showed that the Pearson correlation coefficient between the true value and the predicted value of the ESTARFM algorithm was 0668 (P<0001). However, for mediumsized sultivated land (11-50 Landsat pixels), the ESTARFM algorithm had the best prediction accuracy. Pearson correlation coefficient between the predicted value of the ECLUE model and the measured value of aboveground biomass of rice was 0630 (P<0001). The spatial resolution and time resolution of the ECLUE modeldriven data are the key factors that constrain the accuracy of inversion results.

参考文献/References:

[1]ELERT E. Rice by the numbers: a good grain.[J]. Nature, 2014, 514(7524): 50-51.
[2]彭如梦,朱 安,张思洁,等. 节水灌溉方式对水稻产量和稻田土壤性状的影响综述[J]. 江苏农业科学,2018,46(23):31-35.
[3]BOUMAN B. How much water does rice use?[J]. Rice Today, 2009(1): 15.
[4]周炜,张岳芳,朱普平,等. 种植制度对长江下游稻田温室气体排放的影响[J].江苏农业学报,2017,33(2):340-345.
[5]SASS R L, CICERONE R J. Photosynthate allocations in rice plants: food production or atmospheric methane?[J]. PNAS, 2002, 99(19): 11993-11995.
[6]刘建君,陈红. 黑龙江省水稻生产碳足迹分析[J]. 南方农业学报, 2018,49(8):1667-1673.
[7]陈劲松,黄健熙,林珲,等. 基于遥感信息和作物生长模型同化的水稻估产方法研究[J]. 中国科学:信息科学, 2010, 40(增刊): 173-183.
[8]ATAULKARIM S T, LIU X, LU Z, et al. Inseason estimation of rice grain yield using critical nitrogen dilution curve[J]. Field Crops Research, 2016, 195: 1-8.
[9]彭代亮. 基于统计与MODIS数据的水稻遥感估产方法研究[D]. 杭州:浙江大学, 2009.
[10]宁佐荣. 基于MODIS数据的低山丘陵区水稻估产模型研究[D]. 重庆:西南大学, 2014.
[11]ZHANG Y, YANG B, LIU X, et al. Estimation of rice grain yield from dualpolarization Radarsat2 SAR data by integrating a rice canopy scattering model and a genetic algorithm[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 57: 75-85.
[12]孙雯. 气候变暖对中国水稻生产的影响[D]. 南京:南京农业大学, 2011.
[13]张峰. 川渝地区农业气象干旱风险区划与损失评估研究[D]. 杭州:浙江大学, 2013.
[14]柯跃进,胡学玉,易卿,等. 水稻秸秆生物炭对耕地土壤有机碳及其CO2释放的影响[J]. 环境科学, 2014, 35(1): 93-99.
[15]陈印军,易小燕,方琳娜,等. 中国耕地资源与粮食增产潜力分析[J]. 中国农业科学, 2016, 49(6): 1117-1131.
[16]VAN ITTERSUM M K, LEFFELAAR P A, VAN K H, et al. On approaches and applications of the Wageningen crop models[J]. European Journal of Agronomy, 2003, 18(3): 201-234.
[17]姜群鸥. 基于AEZ模型的中国农业生产力的估算及其对耕地利用变化的响应[D]. 长沙:中南大学, 2008.
[18]于大江,刘成忠,徐文强. 基于农业生态区法(AEZ)模型的甘肃省玉米生产潜力分析[J]. 甘肃农业大学学报, 2012, 47(4): 73-77.
[19]VAN DIEPEN C A, WOLF J, VAN KEULEN H, et al. WOFOST: a simulation model of crop production[J]. Soil Use and Management, 1989, 5(1): 16-24.
[20]许小路. 基于WOFOST模型的高温热害对江苏省水稻生长及产量的影响模拟[D]. 南京:南京信息工程大学, 2015.
[21]WANG E, ROBERTSON M J, HAMMER G L, et al. Development of a generic crop model template in the cropping system model APSIM[J]. European Journal of Agronomy, 2002, 18(1): 121-140.
[22]KEATING B A, CARBERRY P S, HAMMER G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[23]YUAN W P, LIU S G, ZHOU G S, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural & Forest Meteorology, 2007, 143(3): 189-207.
[24]GITELSON A A, PENG Y, ARKEBAUER T J, et al. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production[J]. Journal of Plant Physiology, 2015, 177: 100-109.
[25]GITELSON A A, PENG Y, HUEMMRICH K F. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data[J]. Remote Sensing of Environment, 2014, 147(10): 108-120.
[26]JIN C, XIAO X, WAGLE P, et al. Effects of insitu and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model[J]. Agricultural & Forest Meteorology, 2015, 213(25): 240-250.
[27]GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(8): 2207-2218.
[28]ZHU X, CHEN J, GAO F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
[29]LI X, LING F, FOODY G M, et al. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps[J]. Remote Sensing of Environment, 2017, 196: 293-311.
[30]EMELYANOVA I V, MCVICAR T R, VAN NIEL T G, et al. Assessing the accuracy of blending LandsatMODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection[J]. Remote Sensing of Environment, 2013, 133(12): 193-209.
[31]BAI L, CAI J, LIU Y, et al. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin[J]. Agricultural Water Management, 2017, 188: 1-11.
[32]DONG T, LIU J, QIAN B, et al. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat8 and MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 49: 63-74.
[33]GRTNER P, FRSTER M, KLEINSCHMIT B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring[J]. Remote Sensing of Environment, 2016, 177: 237-247.
[34]JARIHANI A, MCVICAR T, VAN NIEL T, et al. Blending landsat and MODIS data to generate multispectral indices: a Comparison of ‘indexthenblend’ and ‘blendthenindex’ approaches[J]. Remote Sensing, 2014, 6(10): 9213-9238.
[35]林怡辉,安建国. 增城年鉴[M]. 广州:广东旅游出版社, 2016.
[36]牛忠恩,闫慧敏,黄玫,等. 基于MODISOLI遥感数据融合技术的农田生产力估算[J]. 自然资源学报, 2016,31(5):875-885.
[37]WANG H, JIA G, FU C, et al. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling[J]. Remote Sensing of Environment, 2010, 114(10): 2248-2258.
[38]WANG Z, XIAO X, YAN X. Modeling gross primary production of maize cropland and degraded grassland in northeastern China[J]. Agricultural and Forest Meteorology, 2010, 150(9): 1160-1167.
[39]YAN H M, FU Y L, XIAO X M, et al. Modeling gross primary productivity for winter wheatmaize double cropping system using MODIS time series and CO2 eddy flux tower data.[J]. Agriculture Ecosystems & Environment, 2009, 129(4): 391-400.
[40]ZHANG Y, YU Q, JIANG J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 2010, 14(4): 757-767.
[41]YUAN W, LIU S, YU G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2010, 114(7): 1416-1431.
[42]MYNENI R B, WILLIAMS D L. On the relationship between FAPAR and NDVI[J]. Remote Sensing of Environment, 1994, 49(3): 200-211.
[43]MISSON, MONSON R K, SCHMID H P, et al. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eightday mean flux[J]. Agricultural & Forest Meteorology, 2005, 131(1): 1-12.
[44]POTTER C S, RANDERSON J T, FIELD C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
[45]YUAN W, CHEN Y, XIA J, et al. Estimating crop yield using a satellitebased light use efficiency model[J]. Ecological Indicators, 2016, 60: 702-709.

相似文献/References:

[1]金正婷,李卫国,景元书.基于影像融合的冬小麦种植面积提取适宜尺度研究[J].江苏农业学报,2015,(06):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]
 JIN Zheng-ting,LI Wei-guo,JING Yuan-shu.Appropriate extraction scale of winter wheat planting area based on image fusion[J].,2015,(03):1312.[doi:doi:10.3969/j.issn.1000-4440.2015.06.018]

备注/Memo

备注/Memo:
收稿日期:2018-09-25 基金项目:广东省科技计划项目(2017A050501031、2017A040406022);广州市科技计划项目(201804020034) 作者简介:廖靖(1989-),男,四川成都人 博士研究生,主要从事农用地生产力监测与评价研究。(E-mail)l_j_0817@163.com 通讯作者:胡月明,(E-mail)ymhu163@163.com
更新日期/Last Update: 2019-06-30