参考文献/References:
[1]MIURA K, JIN J B, HASEGAWA P M. Sumoylation, a post-translational regulatory process in plants [J]. Curr Opin Plant Biol, 2007, 10(5): 495-502.
[2]HANANIA U, FURMAN-MATARASSO N, RON M, et al. Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death [J]. Plant J, 1999, 19: 533-541.
[3]KUREPA J, WALKER J M, SMALLE J, et al. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis accumulation of SUMO1 and -2 conjugates is increased by stress [J]. J Biol Chem, 1999, 278(9): 6862-6872.
[4]SARACCO S A, MILLER M J, KUREPA J, et al. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential [J]. Plant Physiol, 2007, 145(1): 119-134.
[5]HUANG L, YANG S, ZHANG S, et al. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root [J]. Plant J, 2009, 60(4): 666-678.
[6]CASTANO-MIQUEL L, SEGUI J, LOIS L M. Distinctive properties of Arabidopsis SUMO paralogues support the in vivo predominant role of AtSUMO1/2 isoforms [J]. Biochem J, 2011, 436(3): 581-590.
[7]MIURA K, HASEGAWA P M. Sumoylation and other ubiquitin-like post-translational modifications in plants [J]. Trends Cell Biol, 2010, 20(4): 223-232.
[8]PARK H J, KIM W Y, PARK H C, et al. SUMO and SUMOylation in plants [J]. Mol Cells, 2011, 32(4): 305-316.
[9]CASTRO P H, TAVARES R M, BEJARANO E R, et al. SUMO, a heavyweight player in plant abiotic stress responses [J]. Cell Mol Life Sci, 2012, 69(19): 3269-3283.
[10]JIN J B, JIN Y H, LEE J, et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure [J]. Plant J, 2008, 53(3): 530-540.
[11]MIURA K, LEE J, MIURA T, et al. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid [J]. Plant Cell Physiol, 2010, 51(1): 103-113.
[12]LIU Y, LAI J, YU M, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation [J]. Plant Cell, 2016, 28 (9): 2225-2237.
[13]CATALA R, OUYANG J, ABREU I A, et al. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J]. Plant Cell, 2007, 19(9): 2952-2966.
[14]MIURA K, JIN J B, LEE J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis [J]. Plant Cell, 2007, 19(4): 1403-1414.
[15]VAN DEN BURG H A, KINI R K, SCHUURINK R C, et al. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense [J]. Plant Cell, 2010, 22(6): 1998-2016.
[16]RAORANE M L, MUTTE S K, VARADARAJAN A R, et al. Protein SUMOylation and plant abiotic stress signaling: in silico case study of rice RLKs, heat-shock and Ca(2+)-binding proteins [J]. Plant Cell Rep, 2013, 32(7): 1053-1065.
[17]LEE J, NAM J, PARK H C, et al. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase [J]. Plant J, 2006, 49(1): 79-90.
[18]MIURA K, LEE J, JIN J B, et al. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling [J]. Proc Natl Acad Sci USA, 2009, 106(13): 5418-5423.
[19]ZHENG Y, SCHUMAKER K S, GUO Y, et al. Sumoylation of transcription factor MYB30 by the small ubiquitin-like modifier E3 ligase SIZ1 mediates abscisic acid response in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2012, 109(31): 12822-12827.
[20]MIURA K, RUS A, SHARKHUU A, et al. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses [J]. Proc Natl Acad Sci USA, 2005, 102(21): 7760-7765.
[21]PARK B S, SONG J T, SEO H S, et al. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1 [J]. Nat Commun, 2011, 2: 400.
[22]MIURA K, LEE J, GONG Q, et al. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation [J]. Plant Physiol, 2011, 155(2): 1000-1012.
[23]MIURA K, HASEGAWA P M. Sumoylation and other ubiquitin-like post-translational modifications in plants [J]. Trends Cell Biol, 2010, 20(4): 223-232.
[24]NOVATCHKOVA M, TOMANOV K, HOFMANN K, et al. Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison [J]. New Phytologist, 2012, 195(1): 23-31.
[25]WANG H, SUN R, CAO Y, et al. OsSIZ1, a SUMO E3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice [J]. Plant Cell Physiol, 2015, 56(12):2381-2395.
[26]AUGUSTINE R C, YORK S L, RYTZ T C, et al. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress [J]. Plant Physiol, 2016, 171 (3): 2191-2210.
[27]ZHANG R F, GUO Y, LI Y Y, et al. Functional identification of MdSIZ1 as a SUMO E3 ligase in apple [J]. J Plant Physiol, 2016, 198:69-80.
[28]CAI B, KONG X, ZHONG C, et al. SUMO E3 Ligases GmSIZ1a and GmSIZ1b regulate vegetative growth in soybean [J]. J Integr Plant Biol, 2017, 59(1):2-14.
[29]ZHOU L J, LI Y Y, ZHANG R F, et al. The SUMO E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low temperature conditions in apple[J]. Plant Cell Environ, 2017, 40(10):2068-2080.
[30]WAN Y F, ROBERT K, ROWAN A M, et al. Spatiotemporal expression patterns of wheat amino acid transporters reveal their putative roles in nitrogen transport and responses to abiotic stress[J]. Scientific Reports, 2017, 7(1): 5461.
[31]CHOULET F, ALBERTI A, THEIL S, et al. Structural and functional partitioning of bread wheat chromosome 3B [J]. Science,2014, 345(6194):1249721.
[32]PFEIFER M, KUGLER K G, SANDVE S R, et al. Genome interplay in the grain transcriptome of hexaploid bread wheat [J]. Science,2014, 345(6194):1250091.
[33]KIM D, PERTEA G, TRAPNELL C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biology,2013,14(4):R36.
[34]TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3):562-578.
[35]INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194):1251788.
相似文献/References:
[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(01):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(01):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(01):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(01):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(01):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(01):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(01):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]