[1]赵霞,叶林,纳学伟,等.盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响[J].江苏农业学报,2017,(04):782-787.[doi:doi:10.3969/j.issn.1000-4440.2017.04.009]
 ZHAO Xia,YE Lin,NA Xue-wei,et al.Influence of arbuscular mycorrhizal fungus on the osmotic adjustment substance and antioxidant system of Medicago sativa under salt-alkaline stress[J].,2017,(04):782-787.[doi:doi:10.3969/j.issn.1000-4440.2017.04.009]
点击复制

盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年04期
页码:
782-787
栏目:
遗传育种·生理生化
出版日期:
2017-08-30

文章信息/Info

Title:
Influence of arbuscular mycorrhizal fungus on the osmotic adjustment substance and antioxidant system of Medicago sativa under salt-alkaline stress
作者:
赵霞叶林纳学伟李国昌
(宁夏大学,宁夏银川750021)
Author(s):
ZHAO XiaYE LinNA Xue-weiLI Guo-chang
(Ningxia University,Yinchuan 750021, China)
关键词:
盐碱胁迫苜蓿渗透调节抗氧化
Keywords:
salt-alkaline stressMedicago sativaosmotic adjustmentantioxidant system
分类号:
S551+.7
DOI:
doi:10.3969/j.issn.1000-4440.2017.04.009
文献标志码:
A
摘要:
本研究旨在探讨盐碱胁迫下接种丛枝菌根真菌(AMF)对苜蓿幼苗耐盐碱性的影响。以紫花苜蓿(Medicago sativa L.)为试验材料,研究接种摩西球囊霉(Glomus mosseae)对苜蓿幼苗渗透调节物质及抗氧化系统的影响。结果表明,盐碱胁迫下,与未接菌处理相比,接种AMF处理的苜蓿叶片超氧阴离子(O2·-)含量、过氧化氢(H2O2)含量和丙二醛(MDA)含量以及电解质透出率较低,分别降低了2705%、4029%、2455%和4506%,其超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性较高,分别提高了1018%、677%和1916%,渗透调节物质可溶性糖含量、可溶性蛋白含量和脯氨酸含量较高,分别提高了2333%、1064%和3238%。说明,在盐碱胁迫下接种AMF可有效提高渗透调节物质可溶性糖含量、可溶性蛋白含量和游离脯氨酸含量,增强SOD活性、POD活性和CAT活性,减少O2·-含量、H2O2含量和MDA的含量及电解质渗出率,降低活性氧(ROS)水平,减轻膜脂过氧化伤害,提高苜蓿耐盐碱胁迫的能力。
Abstract:
To determine the influence of Glomus mosseae, a kind of arbuscular mycorrhizal fungus (AMF), on the salt tolerance of Medicago sativa cv. Gannong No.3 seedlings under salt-alkaline stress, the content of osmotic adjustment substance and the activity of antioxidant system of M. sativa were studied. AMF decreased the contents of superoxide anion (O2·-), hydrogen peroxide(H2O2) and malondialdehyde (MDA) and electrolyte leakage rate by 27.05%, 40.29%, 24.55% and 45.06%, respectively, but increased the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) by 10.18%, 19.16% and 677%, respectively, compared to control(no AMF inoculation). The AMF also improved the accumulations of soluble sugar, soluble protein and free proline of M. sativa seedlings by 23.33%, 10.64% and 32.38%, respectively. Taken together, the AMF reduced the accumulation of reactive oxygen species (ROS), lowered the contents of O2·-, H2O2, and MDA, and boosted the accumulation of ostmotic adjustment substances, thereby improving the tolerance of M. sativa seedlings to salt-alkaline stress.

参考文献/References:

[1]杜利霞,董宽虎,杨桂英,等.不同盐碱化草地对披碱草光合生理特性的影响[J].草业学报,2011,20(5):49-56.
[2]TESTER M, DAVENPORT R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003, 91(5) :503-527.
[3]CINATL J, MORGENSTERN B, BAUER G, et al. Glycyrrhizin, an active component of liquor rice roots, and replication of SARS-associated coronavirus [J]. The Lancet,2003,361( 9374) :2045-2046.
[4]王善仙,刘宛,李培军,等. 盐碱土植物改良研究进展[J].中国农学通报,2011,27(24):1-7.
[5]张国盛,黄高宝,张仁陟,等. 种植苜蓿对黄绵土表土理化性质的影响[J]. 草业学报,2003,12(5):88-93.
[6]王继和,杨自辉,胡明贵,等. 干旱区盐渍化土地综合治理技术研究[J]. 中国生态农业学报,2001,9(1):64-66.
[7]WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16: 299-363.
[8]BONFANTE P, GENRE A. Mechanism underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nature Communications, 2010,1: 48.
[9]LATEF A A H A, CHAOXING H. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress[J]. Acta Physiologiae Plantarum, 2011, 33(4): 1217-1225.
[10]AMBO P B N, ETHIOPIA E A, SERFOJI P, et al. Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa Ruby. by using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus coagulans[J]. Journal of Agricultural Technology, 2010, 6(1): 37-45.
[11]张永峰,殷波. 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报,2009,18(1):46-50.
[12]张永锋,梁正伟,隋丽,等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J].草业学报,2009,18(4):230-235.
[13]张晓磊,刘晓静,齐敏兴,等. 混合盐碱对紫花苜蓿苗期根系特征的影响[J].中国生态农业学报,2013,21(3):340-346.
[14]张晓磊,刘晓静,齐敏兴,等. 混合盐碱胁迫对紫花苜蓿苗期生长特性的影响[J].草原与草坪,2013,33(1):16-20.
[15]刘晓静,张晓磊,齐敏兴,等. 混合盐碱对紫花苜蓿种子萌发及幼苗期叶绿素荧光特性的影响[J].草地学报,2013,21(3):501-507.
[16]赵琦,包玉英.混合盐碱胁迫下丛枝菌根真菌对紫花苜蓿生长及2种酚酸含量的影响[J].西北植物学报,2015,35(9):1829-1836.
[17]HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51(1): 463-499.
[18]HU X, ZHANG Y, SHI Y, et al. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress[J]. Plant Physiology and Biochemistry, 2012, 57: 200-209.
[19]李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
[20]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
[21]张璐,张倩,叶宝兴. 盐胁迫下丛枝菌根真菌(AMF)对紫花苜蓿生长的影响[J]. 山东农业科学,2010(3):32-37.
[22]AASAMAA K, HEINSOO K, HOLM B. Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system [J]. Biomass and Bioenergy, 2010, 34 (6): 897-905.
[23]范苏鲁,苑兆和,冯立娟,等.干旱胁迫对大丽花生理生化指标的影响[J].应用生态学报,2011,22(3):651-657.
[24]HENDERSON D E, JOSE S. Biomass production potential of three short rotation woody crop species under varying nitrogen and water availability [J]. Agroforestry Systems, 2010, 80(2): 259-273.
[25]逢洪波,谷思雨,马纯艳,等.盐胁迫对欧洲千里光幼苗生理生化特性的影响[J].江苏农业科学,2015,43(12):274-276.
[26]刘婷.丛枝菌根真菌(AMF)调控杨树生长及干旱响应机制的研究[D].杨陵:西北农林科技大学,2014.
[27]韩金龙,李慧,蔺经,等. 核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J]. 江苏农业学报,2015,31(4):893-898.
[28]韩冰,贺超兴,闫妍,等.AMF对低温胁迫下黄瓜幼苗生长和叶片抗氧化系统的影响[J].中国农业科学,2011,44(8):1646-1653.
[29]吴强盛,邹英宁,夏仁学.水分胁迫下丛枝菌根真菌对红橘叶片活性氧代谢的影响[J].应用生态学报,2007,18(4):825-830.
[30]SHENG M,TANG M,ZHANG F F,et al. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress[J]. Mycorrhiza, 2011,21(5): 423-430.
[31]刘婷,唐明.丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响[J].植物生态学报,2014,38(9):1001-1007.
[32]GONG M, TANG M, CHEN H, et al. Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress [J]. New Forests, 2013, 44 (3):399-408.
[33]陈万超.三种经济植物抗碱生理机制研究[D].长春:东北师范大学,2011.
[34]梁新华,刘凤敏. NaCl和 Na2CO3胁迫对甘草幼苗渗透调节物质含量的影响[J]. 农业科学研究,2006,27(2): 96-98.
[35]WANG X, GENG S, RI Y J, et al. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses[J]. Scientia Horticulturae, 2011, 130(1): 248-255.
[36]刘滨硕,康春莉,王鑫,等.羊草对盐碱胁迫的生理生化响应特征[J].农业工程学报,2014,30(23):166-173.

相似文献/References:

[1]刘赵月,李蕊彤,李晶,等.盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响[J].江苏农业学报,2020,(04):842.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]
 LIU Zhao-yue,LI Rui-tong,LI Jing,et al.Effects of geniposide on seed germination and AsA-GSH cycle in root of maize under saline-alkali stress[J].,2020,(04):842.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]
[2]刘昌壮,陶雨朝,杨富强,等.硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响[J].江苏农业学报,2023,(03):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
 LIU Chang-zhuang,TAO Yu-zhao,YANG Fu-qiang,et al.Effects of soaking seeds with manganese sulfate solution on saline-alkali resistance of maize seeds during germination[J].,2023,(04):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
[3]刘铎,王拯,李平,等.小麦对盐碱胁迫响应及耐盐碱调控技术研究进展[J].江苏农业学报,2024,(10):1970.[doi:doi:10.3969/j.issn.1000-4440.2024.10.022]
 LIU Duo,WANG Zheng,LI Ping,et al.Advances in response of wheat to saline-alkali stress and saline-alkali tolerance regulation technology[J].,2024,(04):1970.[doi:doi:10.3969/j.issn.1000-4440.2024.10.022]

备注/Memo

备注/Memo:
收稿日期:2017-02-08 基金项目:宁夏大学自然科学基金项目(ZR15034;ZR1252);宁夏自然科学基金项目(NZ1112);宁夏中部干旱带特色优势作物品种引选项目(hzyz201406) 作者简介:赵霞(1979-),女,山西朔州人,硕士,讲师,主要从事草地资源与生态研究。(E-mail)zhao_x2088881@126.com 通讯作者:叶林,(Email)yelin.3993@163.com
更新日期/Last Update: 2017-09-01